scholarly journals Biosynthesis of growth hormone in the rat anterior pituitary gland. Stimulation of biosynthesis in vitro by insulin

1973 ◽  
Vol 134 (4) ◽  
pp. 1103-1113 ◽  
Author(s):  
A. Betteridge ◽  
M. Wallis

The effect of insulin on the incorporation of radioactive leucine into growth hormone was investigated by using rat anterior pituitary glands incubated in vitro. A 50% stimulation over control values was observed at insulin concentrations above 2μm (280munits/ml). The effect was specific for growth hormone biosynthesis, over the range 1–5μm-insulin (140–700munits/ml). Lower more physiological concentrations had no significant effect in this system. Above 10μm (1.4 units/ml) total protein synthesis was also increased. The stimulation of growth hormone synthesis could be partially blocked by the addition of actinomycin D, suggesting that RNA synthesis was involved. Insulin was found to stimulate the rate of glucose utilization in a similar way to growth hormone synthesis. 2-Deoxyglucose and phloridzin, which both prevented insulin from stimulating glucose utilization, also prevented the effect of insulin on growth hormone synthesis. If glucose was replaced by fructose in the medium, the effect of insulin on growth hormone synthesis was decreased. We conclude that the rate of utilization of glucose may be an important step in mediating the effect of insulin on growth hormone synthesis.

1978 ◽  
Vol 176 (1) ◽  
pp. 319-323 ◽  
Author(s):  
A Betteridge ◽  
M Wallis

The prostaglandin E content of dispersed rat anterior pituitary glands was found to increase in the presence of phospholipase A or arachidonic acid. The increases were abolished by the addition of indomethacin. Similarly, the rate of somatotropin (growth hormone) synthesis was increased by these two agents, and the increases were again abolished by indomethacin. Phospholipase A also stimulated somatotropin release. The stimulation of prostaglandin E accumulation was a specific response to those fatty acids that are precursors for prostaglandin synthesis. One such precursor, [3H]arachidonic acid, was incorporated by rat anterior pituitary glands in vitro, and found to be associated mainly with phosphatidylethanolamine-like material. It is concluded that the intracellular concentration of prostaglandin E is limited by the availability of precursor fatty acids and that this can be increased by the addition of exogenous precursors or by the action of exogenous phospholipase A on the cellular phospholipid. Factors that increased prostaglandin E concentrations also increase the rate of synthesis of somatotropin, providing further evidence for the concept that prostaglandin E is involved in modulation of the rate of synthesis of this hormone.


1984 ◽  
Vol 105 (4) ◽  
pp. 455-462 ◽  
Author(s):  
T. R. Hall ◽  
S. Harvey ◽  
A. Chadwick

Abstract. Anterior pituitary glands from broiler fowl were incubated alone or with hypothalamic tissue in medium containing either serotonin or serotoninergic drugs, acetylcholine or cholinergic drugs, and the release of prolactin (Prl) and growth hormone (GH) measured by homologous radioimmunoassays. The neurotransmitters and drugs affected the release of hormones from the pituitary gland only when hypothalamic tissue was also present. Serotonin and its agonist quipazine stimulated the release of Prl and inhibited release of GH in a concentration-related manner. The antagonist methysergide blocked the effects of serotonin and quipazine on Prl. Acetylcholine and its agonist pilocarpine also stimulated release of Prl and inhibited release of GH in a concentration-related manner. Atropine blocked these responses. The results show that serotonin and acetylcholine affect pituitary hormone secretion by acting on the hypothalamus. They may stimulate the secretion of a Prl releasing hormone and somatostatin.


1971 ◽  
Vol 134 (5) ◽  
pp. 1095-1113 ◽  
Author(s):  
M. R. Pandian ◽  
G. P. Talwar

The effect of pituitary growth hormone on the biosynthesis of DNA in the thymus and other lymphoid organs, as well as the ability of the rat to respond immunologically to sheep red blood cells, has been evaluated. There is a marked reduction in plaque-forming cells, hemagglutination titers, and DNA synthesis in animals when examined at 15 wk after hypophysectomy. Administration of bovine growth hormone (BGH) leads to the enhancement of DNA synthesis in lymphoid organs and recovery of the immune response. Similar effects of the hormone are observed in plateaued rats. Injection of rabbit anti-BGH globulins, in contrast to normal rabbit globulins, over 5 days causes a drop in the weight of the thymus and in the rate of DNA synthesis in this organ. The thymus is also the organ in which stimulation of DNA synthesis is observed at a time period earlier than the spleen and lymph nodes after a single injection of BGH. The hormone stimulates not only the incorporation of thymidine-3H into DNA in the cortical cells, but also the incorporation of sodium sulfate-35S into TCA-insoluble biopolymers reported to be elaborated in the medullary area of the thymus. An in vitro system for the action of BGH on the thymus has been described. There is an obligatory requirement for calcium, but not for fetal calf serum in the medium for the hormone effect. An early action of the hormone is the enhanced incorporation of uridine-G-3H into RNA in thymocytes which is followed by a stimulation of the synthesis of proteins and DNA. The stimulatory action of growth hormone on RNA synthesis is not because of a facilitated uptake of the radioactive uridine by the cells under hormonal influence, a mechanism by which insulin is observed to increase RNA synthesis in thymocytes in vitro. The action of growth hormone on thymocytes is specific, since thyroid-stimulating hormone (TSH), luteinizing hormone (LH), and heat-inactivated growth hormone are not effective. BGH has also a beneficial action on the regeneration of the thymus and spleen in starved rats.


2001 ◽  
pp. 659-665 ◽  
Author(s):  
SN De Biasi ◽  
LI Apfelbaum ◽  
ME Apfelbaum

OBJECTIVE: The purpose of this work was to study the direct effect of leptin on LH release by anterior pituitary glands from female rats at the time of spontaneous and steroid-induced LH surge. METHODS: LH responsiveness to leptin by pituitaries from rats killed in the afternoon (1500 h) at different stages of the 4-day estrous cycle (diestrus-1: D1; diestrus-2: D2; proestrus; estrus), ovariectomized (OVX; 15 days post-castration) and ovariectomized steroid-primed (OVX-E(2)/Pg; pretreated with 5 microg estradiol and 1 mg progesterone), was evaluated in vitro. Hemi-adenohypophyses were incubated in the presence of synthetic murine leptin for 3 h. RESULTS: Addition of increasing concentrations of leptin (0.1-100 nmol/l) to the incubation medium of proestrus pituitaries produced a dose-related stimulation of LH release; the maximal increase to 315% of control was obtained with 10 nmol/l leptin. Leptin (10 nmol/l) enhanced LH release at all days of the estrous cycle, the greatest response occurring in proestrus (318%) and the lowest at D1 (123%). In order to evaluate the role of nitric oxide (NO) in the action of leptin on LH release, glands from proestrus rats were incubated in the presence of 10 nmol/l leptin with or without 0.3 mmol/l N(G)-monomethyl-l-arginine (NMMA), a competitive inhibitor of NO synthase (NOS). NMMA completely suppressed the stimulation of LH release induced by leptin. Leptin also stimulated LH release by pituitaries from OVX rats, and treatment with steroid hormones led to a marked increase in the response (OVX: 162% compared with OVX-E(2)/Pg: 263%; P<0.05). For comparative analysis, a similar experimental procedure was carried out using GnRH (10 nmol/l). Leptin acts at the pituitary level in a similar manner as GnRH, although with significantly lower potency. CONCLUSIONS: These results confirm and extend previous reports regarding a direct action of leptin at the pituitary level, stimulating LH release by anterior pituitaries from female rats at the time of spontaneous and steroid-induced LH surge. In the female rat pituitary this leptin action is controlled by gonadal steroids and mediated by NO.


1984 ◽  
Vol 102 (2) ◽  
pp. 153-159 ◽  
Author(s):  
T. R. Hall ◽  
S. Harvey ◽  
A. Chadwick

ABSTRACT Pituitary glands and hypothalami from broiler fowl were incubated in medium containing testosterone, and prolactin and GH release were determined. Pituitary glands were also preincubated for 20 h in medium containing testosterone, and then in medium containing various secretagogues. Testosterone inhibited the release of prolactin directly from the pituitary gland in a concentration-related manner. The hypothalamus stimulated the release of prolactin, but by a lesser amount in the presence of testosterone. When pituitary glands were preincubated with testosterone, subsequent release of prolactin was inhibited, except with the highest concentration which stimulated prolactin release. Hypothalamic extract (HE) markedly stimulated prolactin release from control pituitary glands although testosterone-primed glands were less responsive. The stimulation of prolactin release by thyrotrophin releasing hormone (TRH) and prostaglandin E2 (PGE2) was also reduced by preincubation of the pituitary glands with testosterone. Priming with testosterone did not affect the release of GH from pituitary glands alone, but reduced the TRH-, HE- and PGE2-stimulated release of GH. These results demonstrate that testosterone directly inhibits prolactin secretion and reduces the sensitivity of pituitary lactotrophs and somatotrophs to provocative stimuli. J. Endocr. (1984) 102, 153–159


1985 ◽  
Vol 108 (4) ◽  
pp. 479-484 ◽  
Author(s):  
T. R. Hall ◽  
S. Harvey ◽  
A. Chadwick

Abstract. The basal release of prolactin from cockerel anterior pituitary glands in vitro declined between 1 and 7 weeks of age, to a level less than that released by pituitary glands from 18 week old (adult) cockerels and hens. Basal growth hormone (GH) release increased between 1 and 7 weeks of age but had declined in adults to a level similar to that released from 4 weeks old cockerels. The responsiveness of the pituitary gland to hypothalamic stimulation, using hypothalami from 8 week old broiler fowl, was also age-related. Prolactin release was considerably higher from pituitaries of 1 week old cockerels compared to the other age groups. Stimulation of GH release by the hypothalamus was higher from pituitaries of both 1 and 7 week old cockerels compared to the other groups of birds. The increase in release of prolactin following incubation with thyrotrophin releasing hormone (TRH) declined between 1 and 7 weeks, but increased slightly in adult birds, whereas the increase in release of GH following TRH was higher from pituitaries of both 1 and 7 week old cockerels. Hypothalamic prolactin (Prl) releasing activity, measured as the ability of the hypothalamus to stimulate hormone release from 8 week old broiler fowl anterior pituitary glands, declined with the age of the donor cockerels. The hypothalami from adult hens secreted significantly more Prl releasing activity than did adult cockerel hypothalami. The secretion of GH releasing activity decreased markedly with the age of the donor bird. These results suggest that maturational patterns of hormone secretion in fowl are partly due to changes in autonomous hormone release, to changing patterns of hypothalamic activity and to differences in pituitary responsiveness to provocative stimuli.


1982 ◽  
Vol 92 (2) ◽  
pp. 303-308 ◽  
Author(s):  
T. R. HALL

Single pigeon anterior pituitary glands were incubated with or without a hypothalamus in media containing various drugs. Release of prolactin and growth hormone was quantified by an electrophoretic-densitometric method. The hypothalamus stimulated release of both prolactin and growth hormone from the pituitary gland. Dopamine did not affect hormone release from pituitary glands incubated alone, but inhibited hypothalamus-stimulated release of prolactin and augmented hypothalamus-stimulated release of growth hormone in a dose-related manner. The effects of dopamine were reversed by its antagonist, pimozide. Serotonin stimulated release of prolactin and inhibited release of growth hormone from pituitary–hypothalamus co-incubations, and these effects were blocked by its antagonist, methysergide. Thyrotrophin releasing hormone (TRH) stimulated release of both hormones directly from pituitary glands incubated alone. Dopamine now inhibited TRH-stimulated release of prolactin, without affecting TRH-stimulated release of growth hormone. These results indicate that the neurotransmitters, dopamine and serotonin, affect the in-vitro release of factors from the hypothalamus which control the secretion of prolactin and growth hormone. In addition, dopamine may inhibit release of prolactin directly from the pituitary gland, but only when secretion of prolactin is high initially.


1988 ◽  
Vol 255 (5) ◽  
pp. E723-E729
Author(s):  
C. Carter-Su ◽  
F. W. Rozsa ◽  
X. Wang ◽  
J. R. Stubbart

The regulation of hexose transport by growth hormone (GH) was investigated using isolated rat adipocytes. GH caused a rapid (less than 3 min) rise in rates of 3-O-methylglucose transport that reached a maximum of two to six times the basal rates in 10-30 min. The stimulation of transport was transitory, and rates of transport started to decline 15-30 min after GH was added. Transport stimulation required a period of preincubation; no stimulation was observed in freshly isolated cells. GH stimulated hexose transport between 100 and 5,000 ng/ml, with a 50% effective dose between 200 and 300 ng/ml. Depletion of cellular ATP by 2,4-dinitrophenol blocked the ability of GH to stimulate transport but not the decline of transport rates following stimulation by GH. In contrast, an inhibitor of RNA synthesis, actinomycin D, had no effect on either the initial stimulation by GH or the initial subsequent decline of transport when added simultaneously or 15 min prior to GH. Actinomycin D did, however, cause a second rise in hexose transport at approximately 120 min that was blocked by 2,4-dinitrophenol. These results suggest that changes in glucose transport contribute to the effects of GH on carbohydrate and lipid metabolism in adipose tissue. These changes are rapid, of substantial magnitude, and of a complex nature, suggesting that regulation of glucose transport by GH most likely involves multiple mechanisms.


1962 ◽  
Vol 39 (3) ◽  
pp. 423-430
Author(s):  
H. L. Krüskemper ◽  
F. J. Kessler ◽  
E. Steinkrüger

ABSTRACT 1. Reserpine does not inhibit the tissue respiration of liver in normal male rats (in vitro). 2. The decrease of tissue respiration of the liver with simultaneous morphological stimulation of the thyroid gland after long administration of reserpine is due to a minute inhibition of the hormone synthesis in the thyroid gland. 3. The morphological alterations of the thyroid in experimental hypothyroidism due to perchlorate can not be prevented with reserpine.


1968 ◽  
Vol 57 (3_Suppl) ◽  
pp. S19-S35 ◽  
Author(s):  
Å. Hjalmarson

ABSTRACT In vitro addition of bovine growth hormone (GH) to intact hemidiaphragms from hypophysectomized rats has previously been found to produce both an early stimulatory effect lasting for 2—3 hours and a subsequent late inhibitory effect during which the muscle is insensitive to further addition of GH (Hjalmarson 1968). These effects on the accumulation rate of α-aminoisobutyric acid (AIB) and D-xylose have been further studied. In presence of actinomycin D (20 μg/ml) or puromycin (100 μg/ml) the duration of the stimulatory effect of GH (25 μg/ml) was prolonged to last for at least 4—5 hours and the late inhibitory effect was prevented. Similar results were obtained when glucose-free incubation medium was used. Preincubation of the diaphragm at different glucose concentrations (0—5 mg/ml) for 3 hours did not change the GH sensitivity. Addition of insulin at start of incubation could not prevent GH from inducing its late inhibitory effect, while dexamethasone seemed to potentiate this effect of GH. Furthermore, adrenaline was found to decrease the uptake of AIB-14C and D-xylose-14C in the diaphragm, but not to change the sensitivity of the muscle to GH. Preincubation of the diaphragm for 3 hours with puromycin in a concentration of 200 μg/ml markedly decreased the subsequent basal uptake of both AIB-14C and D-xylose-14C, in the presence of puromycin, and abolished the stimulatory effect of GH on the accumulation of AIB-14C. However, the effect of GH on the accumulation of D-xylose-14C was unchanged. The present observations are discussed and evaluated in relation to various mechanisms of GH action proposed to explain the dual nature of the hormone.


Sign in / Sign up

Export Citation Format

Share Document