scholarly journals Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts

1988 ◽  
Vol 250 (3) ◽  
pp. 653-658 ◽  
Author(s):  
J P Slotte ◽  
E L Bierman

This study examines the relationship between cellular sphingomyelin content and the distribution of unesterified cholesterol between the plasma-membrane pool and the putative intracellular regulatory pool. The sphingomyelin content of cultured human skin fibroblasts was reduced by treatment of intact cells with extracellularly added neutral sphingomyelinase, and subsequent changes in the activities of cholesterol-metabolizing enzymes were determined. Exposure of fibroblasts to 0.1 unit of sphingomyelinase/ml for 60 min led to the depletion of more than 90% of the cellular sphingomyelin, as determined from total lipid extracts. In a time-course study, it was found that within 10 min of the addition of sphingomyelinase to cells, a dramatic increase in acyl-CoA:cholesterol acyltransferase activity could be observed, whether measured from the appearance of plasma membrane-derived [3H]cholesterol or exogenously added [14C]oleic acid, in cellular cholesteryl esters. In addition, the cholesteryl ester mass was significantly higher in sphingomyelin-depleted fibroblasts at 3 h after exposure to sphingomyelinase compared with that in untreated fibroblasts [7.1 +/- 0.4 nmol of cholesterol/mg equivalents of esterified cholesterol compared with 4.2 +/- 0.1 nmol of cholesterol/mg equivalents of cholesteryl ester in control cells (P less than 0.05)]. The sphingomyelin-depleted cells also showed a reduction in the rate of endogenous synthesis of cholesterol, as measured by incorporation of sodium [14C]acetate into [14C]cholesterol. These results are consistent with a rapid movement of cholesterol from sphingomyelin-depleted plasma membranes to the putative intracellular regulatory pool of cholesterol. This mass movement of cholesterol away from the plasma membranes presumably resulted from a decreased capacity of the plasma membranes to solubilize cholesterol, since sphingomyelin-depleted cells also had a decreased capacity to incorporate nanomolar amounts of [3H]cholesterol from the extracellular medium, as compared with control cells. These findings confirm previous assumptions that the membrane sphingomyelin content is an important determinant of the overall distribution of cholesterol within intact cells.

1972 ◽  
Vol 11 (3) ◽  
pp. 855-873
Author(s):  
A. M. LEVINE ◽  
JOAN A. HIGGINS ◽  
R. J. BARRNETT

In response to salt water stress there is a marked increase in the plasma membranes of the epithelial secretory cells of the salt glands of domestic ducklings. In the present study, the fine-structural localization of the acyltransferases involved in synthesis of phospholipids has been investigated in this tissue during this increased biogenesis of plasma membranes. The specific activity of the acyltransferases of the salt gland rose in response to salt stress, and this preceded the rapid increase in weight and cellular differentiation. After the weight increase of the gland became established, the specific activity of the acyltransferases declined, but the total activity remained constant. Salt gland tissue fixed in a mixture of glutaraldehyde and formaldehyde retained 35% of the acyltransferase activity of unfixed tissue. Cytochemical studies of the localization of acyltransferase activity in fixed and unfixed salt gland showed reaction product associated only with the lamellar membranes of the Golgi complex. This localization occurred in partially differentiated cells from salt-stressed glands to the greatest extent; and to only a small extent in cells of control tissue from unstressed salt glands. Omission of substrates resulted in absence of reaction product in association with the Golgi membranes. In addition, vesicles having limiting membranes morphologically similar to the plasma membrane occurred between the Golgi region and the plasma membrane in the partially differentiated cells. The phospholipid component of the plasma membrane appears therefore to be synthesized in association with the Golgi membranes and the membrane packaged at this site from which it moves in the form of vesicles to fuse with the pre-existing plasma membrane.


1995 ◽  
Vol 309 (3) ◽  
pp. 905-912 ◽  
Author(s):  
J W Kok ◽  
T Babia ◽  
K Klappe ◽  
D Hoekstra

The involvement of the plasma membrane in the metabolism of the sphingolipids sphingomyelin (SM) and glucosylceramide (GlcCer) was studied, employing fluorescent short-chain analogues of these lipids, 6-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]hexanoylsphingosylphosphorylcholine (C6-NBD-SM), C6-NBD-GlcCer and their common biosynthetic precursor C6-NBD-ceramide (C6-NBD-Cer). Although these fluorescent short-chain analogues are metabolically active, some caution is to be taken in view of potential changes in biophysical/biochemical properties of the lipid compared with its natural counterpart. However, these short-chain analogues offer the advantage of studying the lipid metabolic enzymes in their natural environment, since detergent solubilization is not necessary for measuring their activity. These studies were carried out with several cell types, including two phenotypes (differing in state of differentiation) of HT29 cells. Degradation and biosynthesis of C6-NBD-SM and C6-NBD-GlcCer were determined in intact cells, in their isolated plasma membranes, and in plasma membranes isolated from rat liver tissue. C6-NBD-SM was found to be subject to extensive degradation in the plasma membrane, due to neutral sphingomyelinase (N-SMase) activity. The extent of C6-NBD-SM hydrolysis showed a general cell-type dependence and turned out to be dependent on the state of cell differentiation, as revealed for HT29 cells. In undifferentiated HT29 cells N-SMase activity was at least threefold higher than in its differentiated counterpart. In contrast, in all cell types studied, very little if any biosynthesis of C6-NBD-SM from the precursor C6-NBD-Cer occurred. Moreover, in the case of C6-NBD-GlcCer, neither hydrolytic nor synthetic activity was found to be associated with the plasma membrane. These results are discussed in the context of the involvement of the sphingolipids SM and GlcCer in signal transduction pathways in the plasma membrane.


2005 ◽  
Vol 288 (4) ◽  
pp. F650-F657 ◽  
Author(s):  
Kaarina Pihakaski-Maunsbach ◽  
Shigeki Tokonabe ◽  
Henrik Vorum ◽  
Christopher J. Rivard ◽  
Juan M. Capasso ◽  
...  

Hypertonicity mediated by chloride upregulates the expression of the γ-subunit of Na-K-ATPase in cultured cells derived from the murine inner medullary collecting duct (IMCD3; Capasso JM, Rivard CJ, Enomoto LM, and Berl T. Proc Natl Acad Sci USA 100: 6428–6433, 2003). The purpose of this study was to examine the cellular locations and the time course of γ-subunit expression after long-term adaptation and acute hypertonic challenges induced with different salts. Cells were analyzed by confocal immunofluorescence and immunoelectron microscopy with antibodies against the COOH terminus of the Na-K-ATPase γ-subunit or the γb splice variant. Cells grown in 300 mosmol/kgH2O showed no immunoreactivity for the γ-subunit, whereas cells adapted to 600 or 900 mosmol/kgH2O demonstrated distinct reactivity located at the plasma membrane of all cells. IMCD3 cell cultures acutely challenged to 550 mosmol/kgH2O with sodium chloride or choline chloride showed incorporation of γ into plasma membrane 12 h after osmotic challenge and distinct membrane staining in ∼40% of the cells 48 h after osmotic shock. In contrast, challenging the IMCD3 cells to 550 mosmol/kgH2O by addition of sodium acetate did not result in expression of the γ-subunit in the membranes of surviving cells after 48 h. The present results demonstrate that the Na-K-ATPase γ-subunit becomes incorporated into the basolateral membrane of IMCD3 cells after both acute hyperosmotic challenge and hyperosmotic adaptation. We conclude that the γ-subunit has an important role in the function of Na-K-ATPase to sustain the cellular cation balance over the plasma membrane in a hypertonic environment.


1983 ◽  
Vol 97 (1) ◽  
pp. 196-201 ◽  
Author(s):  
M F Wiser ◽  
P A Wood ◽  
J W Eaton ◽  
J R Sheppard

Normal and Plasmodium berghei (NYU-2 strain)-infected murine erythrocytes display substantially different patterns of plasma membrane phosphoproteins phosphorylation. Intact erythrocytes (normal and parasite infected) incubated with 32Pi and isolated washed erythrocyte plasma membranes incubated with gamma-32P-ATP were analyzed for phosphoproteins by SDS PAGE and autoradiography. Two new phosphoproteins of molecular weight 45,000 (pp45) and 68,000 (pp68), which are absent in normal erythrocyte membranes, are associated with the membranes of infected erythrocytes subjected to both intact-cell and isolated-membrane phosphorylation conditions. Two-dimensional gel electrophoresis indicates that pp45 and pp68 are of parasite origin. Partial or complete proteolytic digestion reveals that pp45 is phosphorylated at similar amino acid residues both in intact cells and in isolated membranes. The pp45 phosphoprotein can be detected at as low as 3% parasitemia and its phosphorylation is not affected by 10 microM cAMP, 1 mM Ca2+, or 5 mM EGTA. Extraction of isolated washed plasma membranes with 0.5% Triton X-100 or 0.1 M NaOH indicates that pp45 is detergent insoluble and only partially extractable with NaOH, suggesting that pp45 is closely associated with the host erythrocyte plasma membrane.


1991 ◽  
Vol 273 (2) ◽  
pp. 429-434 ◽  
Author(s):  
A Darnanville ◽  
R Bredoux ◽  
K J Clemetson ◽  
N Kieffer ◽  
N Bourdeau ◽  
...  

The localization and identity of the human platelet 24 kDa cyclic AMP (cAMP)-dependent phosphoprotein, previously reported to regulate Ca2+ transport, was investigated. It was found to be located on plasma membranes after isolation of these membranes from microsomes. Thus cAMP-dependent regulation of Ca2+ transport was associated with the plasma membrane fraction. Time course studies showed that the catalytic subunit of cAMP-dependent protein kinase (c-sub) induced a maximal 2-fold stimulation of Ca2+ uptake by the plasma membrane vesicles. This stimulation was dose-dependent up to 15 micrograms of c-sub/ml. The increase in Ca2+ uptake also depended upon the outside Ca2+ concentration, and was maximal at 1 microM. As regards the identity of the phosphoprotein, it was clearly distinct from the beta-subunit of glycoprotein Ib, as after electrophoresis under reduced conditions it appeared as a 24 kDa protein, but under non-reduced conditions it appeared as a 22 kDa and not as a 170 kDa protein. Nevertheless, glycoprotein Ib was certainly present, because it was detected with two polyclonal antibodies raised against its two subunits. Furthermore, the 24 kDa phosphoprotein was also present in membranes isolated from platelets obtained from patients with Bernard Soulier Syndrome; these membranes contain no glycoprotein Ib.


1992 ◽  
Vol 282 (1) ◽  
pp. 181-188 ◽  
Author(s):  
N Olmo ◽  
J Turnay ◽  
G Risse ◽  
R Deutzmann ◽  
K von der Mark ◽  
...  

Modulation of 5′-nucleotidase activity by the extracellular matrix proteins fibronectin, laminin and their fragments has been studied in plasma membrane preparations as well as in intact BCS-TC2 and Rugli cells. The ectoenzyme on plasma membranes is activated by laminin; fibronectin inhibits the AMPase activity on BCS-TC2 plasma membranes but no inhibitory effect is found in plasma membrane preparations from Rugli cells. These effects are dependent on the preincubation time and protein concentration. When the effect of the extracellular matrix proteins is studied on intact cells, both BCS-TC2 and Rugli cells show similar behaviour. A decrease in the enzyme activity is observed in the presence of fibronectin. The AMPase inhibitory activity is located on its 40 kDa fragment. No inhibitory activity is found in other fibronectin fragments, including the 140 kDa fragment which contains the RGDS cell-adhesion sequence. Laminin and its E1-4 and E8 fragments are able to activate the ecto-5′-nucleotidase activity of both BCS-TC2 and Rugli cells. The effect of the E1-4 fragment on intact cells is greater than that observed for the E8 fragment and uncleaved laminin. Our results suggest a bifunctional role for 5′-nucleotidase as ectoenzyme and cell receptor for extracellular matrix proteins.


1994 ◽  
Vol 126 (6) ◽  
pp. 1421-1431 ◽  
Author(s):  
A L Hitt ◽  
T H Lu ◽  
E J Luna

We have cloned and sequenced ponticulin, a 17,000-dalton integral membrane glycoprotein that binds F-actin and nucleates actin assembly. A single copy gene encodes a developmentally regulated message that is high during growth and early development, but drops precipitously during cell streaming at approximately 8 h of development. The deduced amino acid sequence predicts a protein with a cleaved NH2-terminal signal sequence and a COOH-terminal glycosyl anchor. These predictions are supported by amino acid sequencing of mature ponticulin and metabolic labeling with glycosyl anchor components. Although no alpha-helical membrane-spanning domains are apparent, several hydrophobic and/or sided beta-strands, each long enough to traverse the membrane, are predicted. Although its location on the primary sequence is unclear, an intracellular domain is indicated by the existence of a discontinuous epitope that is accessible to antibody in plasma membranes and permeabilized cells, but not in intact cells. Such a cytoplasmically oriented domain also is required for the demonstrated role of ponticulin in binding actin to the plasma membrane in vivo and in vitro (Hitt, A. L., J. H. Hartwig, and E. J. Luna. 1994. Ponticulin is the major high affinity link between the plasma membrane and the cortical actin network in Dictyostelium. J. Cell Biol. 126:1433-1444). Thus, ponticulin apparently represents a new category of integral membrane proteins that consists of proteins with both a glycosyl anchor and membrane-spanning peptide domain(s).


1990 ◽  
Vol 68 (1) ◽  
pp. 193-198 ◽  
Author(s):  
L. J. Goodyear ◽  
M. F. Hirshman ◽  
P. A. King ◽  
E. D. Horton ◽  
C. M. Thompson ◽  
...  

Recent reports have shown that immediately after an acute bout of exercise the glucose transport system of rat skeletal muscle plasma membranes is characterized by an increase in both glucose transporter number and intrinsic activity. To determine the duration of the exercise response we examined the time course of these changes after completion of a single bout of exercise. Male rats were exercised on a treadmill for 1 h (20 m/min, 10% grade) or allowed to remain sedentary. Rats were killed either immediately or 0.5 or 2 h after exercise, and red gastrocnemius muscle was used for the preparation of plasma membranes. Plasma membrane glucose transporter number was elevated 1.8- and 1.6-fold immediately and 30 min after exercise, although facilitated D-glucose transport in plasma membrane vesicles was elevated 4- and 1.8-fold immediately and 30 min after exercise, respectively. By 2 h after exercise both glucose transporter number and transport activity had returned to nonexercised control values. Additional experiments measuring glucose uptake in perfused hindquarter muscle produced similar results. We conclude that the reversal of the increase in glucose uptake by hindquarter skeletal muscle after exercise is correlated with a reversal of the increase in the glucose transporter number and activity in the plasma membrane. The time course of the transport-to-transporter ratio suggests that the intrinsic activity response reverses more rapidly than that involving transporter number.


1983 ◽  
Vol 61 (7) ◽  
pp. 547-552 ◽  
Author(s):  
Bernard P. Schimmer

Fractions enriched in plasma membranes were prepared from the Y1 mouse adrenocortical tumor cell line and were characterized with respect to adenylate cyclase activity. Optimal requirements of the adenylate cyclase system for guanyl nucleotides, Mg2+, ATP, and corticotropin (ACTH) were determined. The sensitivity of the adenylate cyclase system to ACTH1–24 in plasma membrane fractions was comparable with that observed in isolated intact cells. Polycations such as poly-L-arginine and histone competitively inhibited the action of ACTH1–24, supporting the view that the affinity of ACTH for the adenylate cyclase system is determined by the basic core of amino acids at residues 15–18. ACTH1–24 was at least one order of magnitude more potent than ACTH1–39 in stimulating adenylate cyclase activity in plasma membrane fractions.


1987 ◽  
Author(s):  
J Enouf ◽  
R Breadux ◽  
N Bourdeau ◽  
S Levy-Toledano

The regulation of Ca2+ concentration in different cells involves two Ca2+ pumps. The presence of such mechanisms in human platelets is still controverted. We then investigated this question by using plasma and intracellular membranes obtained after simultaneous isolation by centrifugation ca 40% sucrose from a mixed 100,000 g membrane fraction.The Ca2+ uptake by the different membrane vesicles has been studied. Both membrane fractions took up Ca2+ and the Ca2+ transport systems exhibited a high affinity towards Ca 2+.However, the two associated Ca2+ transport systems showed a different time course and exhibited different oxalate sensitivity. The plasma membranes are not permeable to potassium oxalate, while the Ca2+ uptake was stimulated by potassium oxalate in intracellular membranes.Two Ca2+ activated ATPase activities are associated with the isolated membrane fractions and appeared different for the following parameters : 1) a different time course of the two enzyme activities; 2)a similar apparent affinity towards Ca2+ (10−7 M), though inhibition of the Ca2+ ATPase activity was only observed in intracellular membranes at 10−6 M Ca2+ ; 3)a different pH dependence with a maximum at pH 7 for the enzyme of intracellular membranes and pH 8 for the enzyme of plasma membranes; 4)a 10 fold difference in the ATP requirement of the enzymes, thus the maximal response was obtained with 20 uM for the intracellular membrane enzyme and with 200 uM for the plasma membrane enzyme ; 5) a different affinity for various nucleotides as energy donors with a higher specificity of the plasma membrane enzyme towards ATP ; 6) a different vanadate inhibition-dose reponse which did not exceed 60% for the plasma enzyme while it reached 100% for the intracellular enzyme.Taken together, these studies agree with the possible role of both a plasma membrane and a dense tubular system Ca2+ -ATPases in the regulation of Ca2+ concentration in human platelets.


Sign in / Sign up

Export Citation Format

Share Document