salt glands
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 38)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Yaru Gao ◽  
Boqing Zhao ◽  
Xiangmei Jiao ◽  
Min Chen ◽  
Baoshan Wang ◽  
...  

Salt-resistant plants have different mechanisms to limit the deleterious effects of high salt in soil; for example, recretohalophytes secrete salt from unique structures called salt glands. Salt glands are the first differentiated epidermal structure of the recretohalophyte sea lavender (Limonium bicolor), followed by stomata and pavement cells. While salt glands and stomata develop prior to leaf expansion, it is not clear whether these steps are connected. Here, we explored the effects of the five phytohormones salicylic acid, brassinolide, methyl jasmonate, gibberellic acid, and abscisic acid on the development of the first expanded leaf of L. bicolor and its potential connection to salt gland, stomata, and pavement cell differentiation. We calculated the total number of salt glands, stomata, and pavement cells, as well as leaf area and pavement cell area, and assessed the correlations between these parameters. We detected strong and positive correlations between salt gland number and pavement cell area, between stomatal number and pavement cell area, and between salt gland number and stomatal number. We observed evidence of coupling between the development of salt glands, stomata, and pavement cells in L. bicolor, which lays the foundation for further investigation of the mechanism behind salt gland development.


2021 ◽  
pp. 1-15
Author(s):  
Bendami Safaa ◽  
Znari Mohammed

Abstract Animals inhabiting arid environments use a variety of behavioural and physiological strategies to balance their water and salt budgets. We studied the effects of dehydration and salt loading on osmoregulatory capacities in a large herbivorous desert lizard, the Moroccan Spiny-tailed lizard Uromastyx nigriventris, the family Agamidae. These lizards select plants with a high K+ to Na+ ratio of 15 to 20, and like other herbivorous lizards, effectively eliminate the extra electrolyte load, mainly via a pair of active nasal salt glands, which exude the extra ions from blood. Here we present results of a series of laboratory experiments, which tested a five-week food and water deprivation and the excretory response of nasal salt glands, during a short period of five days, following salt loading by two separated injections of KCl or NaCl at a 5-day interval (4th and 9th days). During food-water deprivation, hypohydrated lizards lost 32% of their initial body mass with a substantial decrease of their Body Condition Index and the tail volume as an index of energy (fat and then potential metabolic water) storage. Plasma osmolality significantly increased by 20%. There were also significantly increased plasma sodium, chloride, and total protein concentrations. On the other hand, there was no significant decrease in the plasma glucose level. Most of the salt loaded lizards secreted far more K+ than Na+ via the nasal glands, even after NaCl loading. The K+/Na+ ratio decreased only after two to three repetitive NaCl injections but insufficient Na+ was eliminated. Two successive KCl injections were successfully eliminated, but daily natural average K+ administration induced progressive hyperkaliemia. These experimental data agreed with previous observations showing variations of plasma Na+ and K+ concentrations in free-living lizards. The nasal gland constitutes the main route of Cl− excretion but the Cl−/(Na+ + K+) ratio may vary according to observations in other herbivorous species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guoliang Han ◽  
Yuxia Li ◽  
Ziqi Qiao ◽  
Chengfeng Wang ◽  
Yang Zhao ◽  
...  

Plant epidermal cells, such as trichomes, root hairs, salt glands, and stomata, play pivotal roles in the growth, development, and environmental adaptation of terrestrial plants. Cell fate determination, differentiation, and the formation of epidermal structures represent basic developmental processes in multicellular organisms. Increasing evidence indicates that C2H2 zinc finger proteins play important roles in regulating the development of epidermal structures in plants and plant adaptation to unfavorable environments. Here, we systematically summarize the molecular mechanism underlying the roles of C2H2 zinc finger proteins in controlling epidermal cell formation in plants, with an emphasis on trichomes, root hairs, and salt glands and their roles in plant adaptation to environmental stress. In addition, we discuss the possible roles of homologous C2H2 zinc finger proteins in trichome development in non-halophytes and salt gland development in halophytes based on bioinformatic analysis. This review provides a foundation for further study of epidermal cell development and abiotic stress responses in plants.


2021 ◽  
Vol 65 (1) ◽  
pp. 35-45
Author(s):  
Samaneh Mosaferi ◽  
Maryam Keshavarzi

Aeluropus from Poaceae comprises 5 species in the world and 3 species in Iran. This halophytic perennial is distributed in salty and dry soils of Asia, Europe, and Africa. In addition to being used as fodder, it can stabilize the soil by its rhizome or stolon. These features make Aeluropus a valuable plant. In this study, lemma and palea of 10 populations of Aeluropus were studied micromorphologically by scanning electron microscope (SEM) to determine diagnostic features among species studied. Eight characters as micro-prickle, macro-hair, long cell outline, cork and silica cells, papilla, salt gland, and epicuticular wax were studied. The occurrence of salt glands and silica cells in populations/taxa studied showed the ability of Aeluropus to tolerate harsh habitats. Our result showed the taxonomic value of floret micromorphological features to separate Aeluropus species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaojing Xu ◽  
Yingli Zhou ◽  
Ping Mi ◽  
Baoshan Wang ◽  
Fang Yuan

AbstractLimonium sinuatum, a member of Plumbaginaceae commonly known as sea lavender, is widely used as dried flower. Five L. sinuatum varieties with different flower colors (White, Blue, Pink, Yellow, and Purple) are found in saline regions and are widely cultivated in gardens. In the current study, we evaluated the salt tolerance of these varieties under 250 mmol/L NaCl (salt-tolerance threshold) treatment to identify the optimal variety suitable for planting in saline lands. After the measurement of the fresh weight (FW), dry weight (DW), contents of Na+, K+, Ca2+, Cl−, malondialdehyde (MDA), proline, soluble sugars, hydrogen peroxide (H2O2), relative water content, chlorophyll contents, net photosynthetic rate, and osmotic potential of whole plants, the salt-tolerance ability from strongest to weakest is identified as Pink, Yellow, Purple, White, and Blue. Photosynthetic rate was the most reliable and positive indicator of salt tolerance. The density of salt glands showed the greatest increase in Pink under NaCl treatment, indicating that Pink adapts to high-salt levels by enhancing salt gland formation. These results provide a theoretical basis for the large-scale planting of L. sinuatum in saline soils in the future.


2021 ◽  
Vol 90 (3) ◽  
pp. 235-246
Author(s):  
Takao Oi ◽  
Hidekazu Kobayashi

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xi Wang ◽  
Yingli Zhou ◽  
Yanyu Xu ◽  
Baoshan Wang ◽  
Fang Yuan

Abstract Background Identifying genes involved in salt tolerance in the recretohalophyte Limonium bicolor could facilitate the breeding of crops with enhanced salt tolerance. Here we cloned the previously uncharacterized gene LbHLH and explored its role in salt tolerance. Results The 2,067-bp open reading frame of LbHLH encodes a 688-amino-acid protein with a typical helix-loop-helix (HLH) domain. In situ hybridization showed that LbHLH is expressed in salt glands of L. bicolor. LbHLH localizes to the nucleus, and LbHLH is highly expressed during salt gland development and in response to NaCl treatment. To further explore its function, we heterologously expressed LbHLH in Arabidopsis thaliana under the 35S promoter. The overexpression lines showed significantly increased trichome number and reduced root hair number. LbHLH might interact with GLABRA1 to influence trichome and root hair development, as revealed by yeast two-hybrid analysis. The transgenic lines showed higher germination percentages and longer roots than the wild type under NaCl treatment. Analysis of seedlings grown on medium containing sorbitol with the same osmotic pressure as 100 mM NaCl demonstrated that overexpressing LbHLH enhanced osmotic resistance. Conclusion These results indicate that LbHLH enhances salt tolerance by reducing root hair development and enhancing osmotic resistance under NaCl stress.


Plant Biology ◽  
2021 ◽  
Author(s):  
Ping Mi ◽  
Fang Yuan ◽  
Jianrong Guo ◽  
Guoliang Han ◽  
Baoshan Wang

2021 ◽  
Author(s):  
Xi Wang ◽  
Yingli Zhou ◽  
Yanyu Xu ◽  
Baoshan Wang ◽  
Fang Yuan

Abstract Background Identifying genes involved in salt tolerance in the recretohalophyte Limonium bicolor could facilitate the breeding of crops with enhanced salt tolerance. Here we cloned the previously uncharacterized gene LbHLH and explored its role in salt tolerance. Results The 2,067-bp open reading frame of LbHLH encodes a 688-amino-acid protein with a typical helix-loop-helix (HLH) domain. In situ hybridization showed that LbHLH is expressed in salt glands of L. bicolor. LbHLH localizes to the nucleus, and LbHLH is highly expressed during salt gland development and in response to NaCl treatment. To further explore its function, we heterologously expressed LbHLH in Arabidopsis thaliana under the 35S promoter. The overexpression lines showed significantly increased trichome number and reduced root hair number. LbHLH might interact with GLABRA1 to influence trichome and root hair development, as revealed by yeast two-hybrid analysis. The transgenic lines showed higher germination percentages and longer roots than the wild type under NaCl treatment. Analysis of seedlings grown on medium containing mannitol with the same osmotic pressure as 100 mM NaCl or LiCl with the same ionic effect as 100 mM NaCl demonstrated that overexpressing LbHLH relieved osmotic stress. Conclusion These results indicate that LbHLH enhances salt tolerance by alleviating osmotic damage under NaCl stress.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 413
Author(s):  
Sara González-Orenga ◽  
Marius-Nicusor Grigore ◽  
Monica Boscaiu ◽  
Oscar Vicente

Limonium is one of the most interesting and biodiverse genera of halophytes, with many species adapted to saline environments. Limonium species have a promising potential as cultivated minor crops as many have ornamental value, or are already used as medicinal plants. Other species are marketed as gourmet food or can be used for decontamination of polluted soils. Design and implementation of specific breeding programmes are needed to fully realise this potential, based on the vast genetic variation and high stress tolerance of wild species within the genus. Most Limonium species are halophytes, but many are also resistant to drought, especially those from the Mediterranean and other arid regions. Such species constitute attractive models for basic research on the mechanisms of stress tolerance, both constitutive and induced. As typical recretohalopyhtes, with excretive salt glands, Limonium species possess remarkable morpho-anatomical traits. Salt tolerance in this genus relies also on ion accumulation in the leaves, the concomitant use of diverse osmolytes for osmotic adjustment, and the activation of efficient antioxidant systems.


Sign in / Sign up

Export Citation Format

Share Document