scholarly journals Ca2(+)-stimulatable and protein kinase C-inhibitable accumulation of inositol 1,3,4,6-tetrakisphosphate in human platelets

1990 ◽  
Vol 270 (1) ◽  
pp. 125-131 ◽  
Author(s):  
W G King ◽  
C P Downes ◽  
G D Prestwich ◽  
S E Rittenhouse

Thrombin-stimulated (10 s) human platelets produce Ins(1,4,5)P3 and an additional inositol trisphosphate (InsP3), in approximately a 1:20 ratio. The major InsP3 co-migrates with Ins(1,3,4)P3 on strong-anion-exchange h.p.l.c. To identify this species unequivocally, we treated putative Ins(1,3,4)P3 obtained from thrombin-stimulated myo-[3H]inositol-labelled platelets with NaIO4/NaBH4 or 4-phosphomonoesterase. The products indicate that the major InsP3 is at least 90% D-Ins(1,3,4)P3. D-[3H]Ins(1,3,4)P3 added to saponin-permeabilized platelets is hydrolysed to an InsP2 (7.8%) and phosphorylated by a kinase to yield an inositol polyphosphate (0.9%) in 5 min. The phosphorylation product co-migrates with Ins(1,3,4,6)P4 on Partisphere WAX h.p.l.c. Under similar conditions, L-[3H]Ins(1,3,4)P3 is dephosphorylated but not phosphorylated. Relative phosphatase:kinase ratios are 8.7:1 (Vmax. values) and 0.86:1 (Km values) with respect to D-Ins(1,3,4)P3. The kinase activity is predominantly cytosolic (96.8% of total activity) in freeze-thaw-disrupted platelets, and the accumulation of its product is Ca2(+)-dependent. The activity is identified as a 6-kinase on the basis of its product's insensitivity to 5-phosphomonoesterase, resistance to periodate oxidation and co-migration with standard Ins(1,3,4,6)P4 on h.p.l.c. Incubation of platelets with β-phorbol dibutyrate (beta-PDBu, 76 nM), causing activation of protein kinase C, results in a 57.5% inhibition (reversible by the protein kinase C inhibitor staurosporine) of Ins(1,3,4,6)P4 accumulation. alpha-PDBu, which does not stimulate protein kinase C, has no effect. Stimulation of intact platelets with thrombin results in the production of Ins(1,3,4,6)P4 (1.4-fold rise in 30 s) and Ins(1,3,4,5)P4, with the latter being the major InsP4 species. Accumulation of Ins(1,3,4,6)P4 is slightly delayed in comparison with Ins(1,3,4)P3 and is relatively small. We propose that the major route of Ins(1,3,4)P3 metabolism in stimulated human platelets is via phosphatase action.

1987 ◽  
Author(s):  
C T Poll ◽  
P A Kyrle ◽  
J Westwick

Touqui et al (1986) have suggested that phosphorylation by protein kinase C of a 1ipomodulin-1 ike polypeptide extracted from platelets renders it inactive as an inhibitor of phospholipase A2. We have examined this suggestion by measuring thromboxane (Tx) B2 generation and cytosolic free calcium concentration ([Ca++]i) in stimulated, washed human platelets loaded with or without quin-2. Addition of thrombin (0.077, 0.23, 0.77, 2.3 and 7.7 nM) to control platelets produces a dose-related elevation of [Ca++]i (10±5, 50±7, 260±30, 550±25 and 1500±100 nM respectively) and generation of TxB2 (0, 9±4, 45±6, 194±10 and 375±30 pmoles/108 platelets respectively). Preincubation of platelets for 1 min with 1-oleoyl-2-acetyl-rac-glycerol (OAG, 22-198 μM), phorbol myristate acetate (PMA, 1.616 nM) or EGTA (2 mM) produces a marked inhibition of high and low dose thrombin (7.7 nM and 0.77 nM) or NaF (18 mM) induced elevation of [Ca++]i and TxB2 generation. Pretreatment of platelets with the protein kinase C inhibitor, H-7 (60 uM), prevented the inhibition of TxB2 formation induced by PMA (4.816 nM) or OAG (66-198 μM) in either thrombin (0.77 nM) or NaF (18 mM) stimulated platelets. When arachidonic acid (AA, 10 μM) is used as the stimulus, the Δ[Ca++]i is 190±15 nM and TxB2 generation is 35.9±2 pmoles/108 platelets. While pretreatment with 4.8 nM PMA obliterates the AA-induced Δ[Ca++]i and partially reduces (p< 0.05) the TxB2 generation to 27.8+3 pmoles/108 platelets. PMA and OAG pretreatment also inhibits TxB2 generation in thrombin-stimulated, non-quin-2-1oaded platelets. Thus, at least with intact, agonist- and NaF-stimulated platelets, activation of protein kinase C inhibits eicosanoid production.We thank the British Heart Foundation and Ciba-Geigy USA for financial support.


FEBS Letters ◽  
1985 ◽  
Vol 192 (1) ◽  
pp. 4-8 ◽  
Author(s):  
Kimihiko Sano ◽  
Hajime Nakamura ◽  
Tamotsu Matsuo ◽  
Yasuhiro Kawahara ◽  
Hisashi Fukuzaki ◽  
...  

2013 ◽  
Vol 191 (5) ◽  
pp. 2247-2257 ◽  
Author(s):  
Takuya Matsumoto ◽  
Hitoshi Hasegawa ◽  
Sachiko Onishi ◽  
Jun Ishizaki ◽  
Koichiro Suemori ◽  
...  

1990 ◽  
Vol 96 (1) ◽  
pp. 99-106
Author(s):  
H.U. Keller ◽  
V. Niggli ◽  
A. Zimmermann ◽  
R. Portmann

The present study demonstrates new properties of H-7. The protein kinase inhibitor H-7 is a potent activator of several neutrophil functions. Stimulation of initially spherical nonmotile neutrophils elicits vigorous shape changes within a few seconds, increases in cytoskeletal actin, altered F-actin distribution, increased adhesiveness and a relatively small increase in pinocytic activity. H-7 has also chemokinetic activities. Depending on the experimental condition, H-7 may elicit or inhibit neutrophil locomotion. It failed to induce chemotaxis. Thus, the response pattern elicited by H-7 is different from that of other leukocyte activators such as chemotactic peptides, PMA or diacylglycerols. The finding that H-7 can elicit shape changes, actin polymerization and pinocytosis suggests that these events can occur without activation of protein kinase C (PKC). PMA-induced shape changes and stimulation of pinocytosis were not inhibited by H-7.


Sign in / Sign up

Export Citation Format

Share Document