scholarly journals Parasite-induced processes for adenosine permeation in mouse erythrocytes infected with the malarial parasite Plasmodium yoelii

1990 ◽  
Vol 272 (1) ◽  
pp. 277-280 ◽  
Author(s):  
W P Gati ◽  
A N Lin ◽  
T I Wang ◽  
J D Young ◽  
A R P Paterson

In mouse erythrocytes harbouring the malarial parasite Plasmodium yoelii, three processes contributed to inward fluxes of adenosine, one of which is attributed to the native nucleoside transporter, because of the inhibitory effects of nitrobenzylthioinosine (NBMPR). New (parasite-induced) permeation processes of low NBMPR-sensitivity were (i) saturable fluxes with preference for the D enantiomer (D-Ado) and (ii) apparently unsaturable fluxes that proceeded by a channel-like route without enantiomeric selectivity. Parasite-induced fluxes of L- and D-Ado were similarly inhibited by furosemide [IC50 (concn. causing half-maximal inhibition) 15-17 microM], whereas D-Ado fluxes in uninfected erythrocytes were 10-fold less sensitive.

1982 ◽  
Vol 4 (2) ◽  
pp. 77-91 ◽  
Author(s):  
JANICE TAVERNE ◽  
HAZEL M. DOCKRELL ◽  
J. H. L. PLAYFAIR

Vaccine ◽  
2010 ◽  
Vol 28 (29) ◽  
pp. 4644-4652 ◽  
Author(s):  
Cristina T. Stoyanov ◽  
Silvia B. Boscardin ◽  
Stephanie Deroubaix ◽  
Giovanna Barba-Spaeth ◽  
David Franco ◽  
...  

1989 ◽  
Vol 9 (9) ◽  
pp. 3614-3620 ◽  
Author(s):  
S M Aldritt ◽  
J T Joseph ◽  
D F Wirth

We have identified a gene that encodes the polypeptide cytochrome b in the avian malarial parasite Plasmodium gallinaceum. The gene containing the open reading frame was found to be located on a 6.2-kilobase multimeric extrachromosomal element. The amino acid translation from this gene demonstrated significant similarities to cytochrome b sequences from yeast, mammal, and fungus genomes. We present evidence that the P. gallinaceum cytochrome b transcript is part of a larger primary transcript from the element that is subsequently processed. The message for P. gallinaceum cytochrome b was found to be 1.2 kilobases in size. This is the first report identifying a mitochondrial nucleic acid sequence in malaria-causing organisms and suggests that a functional cytochrome system may exist in these parasites.


2004 ◽  
Vol 384 (2) ◽  
pp. 429-436 ◽  
Author(s):  
Sundaramurthy VARADHARAJAN ◽  
B. K. Chandrashekar SAGAR ◽  
Pundi N. RANGARAJAN ◽  
Govindarajan PADMANABAN

Our previous studies have demonstrated de novo haem biosynthesis in the malarial parasite (Plasmodium falciparum and P. berghei). It has also been shown that the first enzyme of the pathway is the parasite genome-coded ALA (δ-aminolaevulinate) synthase localized in the parasite mitochondrion, whereas the second enzyme, ALAD (ALA dehydratase), is accounted for by two species: one species imported from the host red blood cell into the parasite cytosol and another parasite genome-coded species in the apicoplast. In the present study, specific antibodies have been raised to PfFC (parasite genome-coded ferrochelatase), the terminal enzyme of the haem-biosynthetic pathway, using recombinant truncated protein. With the use of these antibodies as well as those against the hFC (host red cell ferrochelatase) and other marker proteins, immunofluorescence studies were performed. The results reveal that P. falciparum in culture manifests a broad distribution of hFC and a localized distribution of PfFC in the parasite. However, PfFC is not localized to the parasite mitochondrion. Immunoelectron-microscopy studies reveal that PfFC is indeed localized to the apicoplast, whereas hFC is distributed in the parasite cytoplasm. These results on the localization of PfFC are unexpected and are at variance with theoretical predictions based on leader sequence analysis. Biochemical studies using the parasite cytosolic and organellar fractions reveal that the cytosol containing hFC accounts for 80% of FC enzymic activity, whereas the organellar fraction containing PfFC accounts for the remaining 20%. Interestingly, both the isolated cytosolic and organellar fractions are capable of independent haem synthesis in vitro from [4-14C]ALA, with the cytosol being three times more efficient compared with the organellar fraction. With [2-14C]glycine, most of the haem is synthesized in the organellar fraction. Thus haem is synthesized in two independent compartments: in the cytosol, using the imported host enzymes, and in the organellar fractions, using the parasite genome-coded enzymes.


2010 ◽  
Vol 19 (8) ◽  
pp. 1577-1586 ◽  
Author(s):  
Reema Alag ◽  
Insaf A. Qureshi ◽  
Nagakumar Bharatham ◽  
Joon Shin ◽  
Julien Lescar ◽  
...  

2000 ◽  
Vol 68 (7) ◽  
pp. 4312-4318 ◽  
Author(s):  
Sanchita Chatterjee ◽  
Subhash Singh ◽  
Rashmi Sohoni ◽  
Nevil J. Singh ◽  
Akhil Vaidya ◽  
...  

ABSTRACT Antibodies against the Plasmodium falciparum P0 ribosomal phosphoprotein (PfP0) have been detected exclusively but extensively in malaria-immune persons. Polyclonal rabbit and mice sera were raised against two recombinant polypeptides of P. falciparum P0 protein, PfP0N and PfP0C, covering amino acids 17 to 61 and the remaining amino acids 61 to 316, respectively. Sera against both these domains detected a 35-kDa protein fromPlasmodium yoelii subsp. yoelii, a rodent malarial parasite, and stained the surface of merozoites in immunofluorescence assays. Total immunoglobulin G (IgG) purified from rabbit and mouse anti-PfP0 sera by ammonium sulfate and DEAE-cellulose chromatography was used for passive transfer experiments in mice. Mice passively immunized with both anti-PfP0N and anti-PfP0C showed distinctly lower levels of parasitemia than control mice. With immunizations on days −1, 0, 1, 3, and 5, about 50% of both sets of mice receiving anti-PfP0N and anti-PfP0C cleared the lethal 17XL strain of P. yoelii and revived by day 25. All the control mice died by day 10. By extending the immunization schedule, the survival period of the mice could be extended for every mouse that received anti-PfP0 IgG. These data demonstrate the cross-protection of the anti-PfP0 IgG and establish parasite P0 protein as a target for invasion-blocking antibodies.


Sign in / Sign up

Export Citation Format

Share Document