Reactive power planning in distribution networks with distributed generation

Author(s):  
M. Alonso ◽  
H. Amarís ◽  
C. Álvarez ◽  
R. Albarracín
DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 60-67 ◽  
Author(s):  
John Edwin Candelo-Becerra ◽  
Helman Hernández-Riaño

<p>Distributed generation (DG) is an important issue for distribution networks due to the improvement in power losses, but the location and size of generators could be a difficult task for exact techniques. The metaheuristic techniques have become a better option to determine good solutions and in this paper the application of a bat-inspired algorithm (BA) to a problem of location and size of distributed generation in radial distribution systems is presented. A comparison between particle swarm optimization (PSO) and BA was made in the 33-node and 69-node test feeders, using as scenarios the change in active and reactive power, and the number of generators. PSO and BA found good results for small number and capacities of generators, but BA obtained better results for difficult problems and converged faster for all scenarios. The maximum active power injections to reduce power losses in the distribution networks were found for the five scenarios.</p>


2013 ◽  
Vol 16 (2) ◽  
pp. 43-53
Author(s):  
Chuong Trong Trinh ◽  
Anh Viet Truong ◽  
Tu Phan Vu

There are now a lot of distributed generation (DG) using asynchronous machines are connected to power distribution grid. These machines do not usually generate reactive power, even consume reactive power, so they generally affect the voltage stability of whole power grid, and can cause instability in itself it is no longer balanced by the torque to work. In this paper, we investigate the voltage stability problem of the asynchronous machine of wind turbines used in power distribution networks. From the static model of the asynchronous machine, this paper will apply the pragmatic criteria to analysis the voltage stability of the asynchronous machine based on the results of the power flow in power distribution network.


Author(s):  
Mahesh Kumar ◽  
Perumal Nallagownden ◽  
Irraivan Elamvazuthi ◽  
Pandian Vasant ◽  
Luqman Hakim Rahman

In the distribution system, distributed generation (DG) are getting more important because of the electricity demands, fossil fuel depletion and environment concerns. The placement and sizing of DGs have greatly impact on the voltage stability and losses in the distribution network. In this chapter, a particle swarm optimization (PSO) algorithm has been proposed for optimal placement and sizing of DG to improve voltage stability index in the radial distribution system. The two i.e. active power and combination of active and reactive power types of DGs are proposed to realize the effect of DG integration. A specific analysis has been applied on IEEE 33 bus system radial distribution networks using MATLAB 2015a software.


2014 ◽  
Vol 1008-1009 ◽  
pp. 391-398
Author(s):  
Xiao Lang Lin ◽  
Ze Xing Chen ◽  
Yu Yao Yang ◽  
Jun Xiong Zou ◽  
Zheng Min Zuo ◽  
...  

A method based on modeling approach that from points to face and boundary conditioned parameter is put forward in this paper. Starting from the Point Model with statistical characteristics, the characteristic parameters which influence the configuration rate of reactive power compensation (RPC) are adopted as boundary conditions. Expanding from Point Model to Analysis Model, different features of actual 20kV cable distribution feeders can be covered. Then, with the optimization research on RPC of urban cable lines in 20 kV distribution networks, the recommended range of RPC rate in different transformers is worked out, which can be extended to the application of 20 kV urban distribution network. The simulation shows that the proposed method can optimize the reactive power configuration in 20 kV distribution networks without the complicated computation of optimal reactive power planning.


Author(s):  
Clainer Bravin Donadel ◽  
Jussara Farias Fardin ◽  
Lucas Frizera Encarnação

AbstractNowadays, ancillary services in electrical distribution networks (e. g. voltage support and reactive power control), usually provided by capacitor banks, start to be performed by distributed generation units (DGs). In this way, several papers have been studying the use of DGs as reactive power providers, and the power electronic/market regulation involved in this new scenario. However, the authors commonly consider a full implementation of Smart Grid philosophy, i. e., there are appropriate communications between DGs and distribution network operator (DNO)’s control centers, but it is not a close reality in many developing countries, due to high costs involved in their implementation. Therefore, this paper proposes a new method in order to use DGs as ancillary services providers in a short and medium-term (called in the literature Pre Smart Grid), in which there are not effective communications between DGs and control centers of DNOs. The proposed method uses a non-uniform DGs distribution, obtained from local atlas of wind, solar, hydraulic and biomass power. The methodology presented accurate results when compared with a PSO-based method, widely used to solve optimization problems, but needs a complete Smart Grid philosophy implementation to work.


Sign in / Sign up

Export Citation Format

Share Document