Optimization of Reactive Power Compensation Rate in 20kV Cable Distribution Network

2014 ◽  
Vol 1008-1009 ◽  
pp. 391-398
Author(s):  
Xiao Lang Lin ◽  
Ze Xing Chen ◽  
Yu Yao Yang ◽  
Jun Xiong Zou ◽  
Zheng Min Zuo ◽  
...  

A method based on modeling approach that from points to face and boundary conditioned parameter is put forward in this paper. Starting from the Point Model with statistical characteristics, the characteristic parameters which influence the configuration rate of reactive power compensation (RPC) are adopted as boundary conditions. Expanding from Point Model to Analysis Model, different features of actual 20kV cable distribution feeders can be covered. Then, with the optimization research on RPC of urban cable lines in 20 kV distribution networks, the recommended range of RPC rate in different transformers is worked out, which can be extended to the application of 20 kV urban distribution network. The simulation shows that the proposed method can optimize the reactive power configuration in 20 kV distribution networks without the complicated computation of optimal reactive power planning.

2013 ◽  
Vol 732-733 ◽  
pp. 1023-1028
Author(s):  
Si Qing Sheng ◽  
Xing Li ◽  
Yang Lu

In this paper a distribution network reactive power planning mathematical model was established, taking the minimized sum of electrical energy loss at the different load operation modes and the investment for reactive power compensation equipments as objective function to solve the planning question respectively and taking the transformer tap as equality constraint. The evolution strategy is improved, The Euclidean distance is introduced into the formation of the initial population, and the initial population under the max load operation mode is based on the optimal solution of the min load condition. The Cauchy mutation and variation coefficient are introduced into the evolution strategy method. By means of improvement of fitness to ensure diversity of population in early and accuracy of the fitness value.


2017 ◽  
Vol 20 (3&4) ◽  
pp. 373-384
Author(s):  
J. Jerome

The use of automation and energy efficient equipment with electronic control would greatly improve industrial production.  These new devices are more sensitive to supply voltage deviation and the characteristics of the power system that was previously ignored are now very important. Hence the benefits of distribution automation have been widely acknowledged in recent years. This paper proposes an efficient load flow solution technique extended to find optimum location for reactive power compensation and network reconfiguration for planning and day-to-day operation of distribution networks.  This is required as a part of the distribution automation system (DAS) for taking various control and operation decisions.  The method exploits the radial nature of the network and uses forward and backward propagation technique to calculate branch currents and node voltages.  The proposed method has been tested to analyze several practical distribution networks of various voltage levels and also having high R/X ratio.


Author(s):  
Mahesh Kumar ◽  
Perumal Nallagownden ◽  
Irraivan Elamvazuthi ◽  
Pandian Vasant ◽  
Luqman Hakim Rahman

In the distribution system, distributed generation (DG) are getting more important because of the electricity demands, fossil fuel depletion and environment concerns. The placement and sizing of DGs have greatly impact on the voltage stability and losses in the distribution network. In this chapter, a particle swarm optimization (PSO) algorithm has been proposed for optimal placement and sizing of DG to improve voltage stability index in the radial distribution system. The two i.e. active power and combination of active and reactive power types of DGs are proposed to realize the effect of DG integration. A specific analysis has been applied on IEEE 33 bus system radial distribution networks using MATLAB 2015a software.


2018 ◽  
Vol 7 (2.28) ◽  
pp. 362
Author(s):  
Raed A. Shalwala

One of the most important operational requirements for any electrical power network for both distribution and transmission level is voltage control. Many studies have been carried out to improve or develop new voltage control techniques to facilitate safe connection of distributed generation. In Saudi Arabia, due to environmental, economic and development perspectives, a wide integration of photovoltaic (PV) genera-tion in distribution network is expected in the near future. This development in the network may cause voltage regulation problems due to the interaction with the existing conventional control system. In a previous paper, a control system has been described using a fuzzy logic control to set the on-line tap changer for the primary substation. In this paper a new control system is proposed for controlling the power factor of individual PV invertors based on observed correlation between net active and reactive power at each connection. A fuzzy logic control has been designed to alter the power factor for the remote invertors from the secondary substation to keep the feeder voltage within the permissible limits. In order to confirm the validity of the proposed method, simulations are carried out for a realistic distribution network with real data for load and solar radiation. Results showing the performance of the new control method are presented and discussed.  


2012 ◽  
Vol 433-440 ◽  
pp. 2406-2410
Author(s):  
Dong Mei Sun ◽  
Jun Wen

In order to balance reactive power, reduce line losses, prevent excessive power frequency and switching over-voltage and adjust and control the line voltage etc. The long-distance and high voltage transmission lines are needed reactive power compensation. High voltage overhead transmission lines and high voltage submarine cable (including mixed-submarine) transmission lines are different, for example, the capacitance in the submarine cable lines is larger than in the conventional overhead lines. Therefore, the reactive power compensation on the EHV transmission lines which contains submarine cable lines is focus on the compensation of submarine cable lines. The reactive power compensation in 500 kV AC submarine cable interconnection project for Hainan power grid and Guangdong power grid[1], which is the first 500 kV long-distance and high-capacity sea trails interconnection project in China and which is just completed soon, is researched by Electro-Magnetic Transient Program——PSCAD/EMTDC (Power System Computer Aided Design/ Electro Magnetic Transient in DC System in this paper). The simulation results verifies that the role of shunt reactor which could absorb charging power and suppress the power frequency overvoltage for the long-distance and high-capacity hybrid submarine cable lines. The conclusions can offer references to suppress power frequency overvoltage and the reactive power compensation in extra high voltage transmission lines which is the mixed mode of overhead transmission lines and submarine cables.


2012 ◽  
Vol 229-231 ◽  
pp. 1030-1033
Author(s):  
Wei Cui ◽  
Lin Chuan Li ◽  
Lei Zhang ◽  
Qian Sun

The reactive power compensation optimization in distribution network has the important meaning in maintaining system voltage stability, decreasing network loss and reducing operation costs. In order to meet factual conditions, we assume the system operates in minimum, normal and maximum three load modes and the objective function of problem includes the costs of power loss and the dynamic reactive power compensation devices allocated. In this paper we use Artificial Immune Algorithm(AIA) and Particle Swarm Optimization Algorithm(PSO) to determine compensate nodes and use the back/forward sweep algorithm calculate load flows. After applied into 28-nodes system, the result demonstrates the method is feasible and effective.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4028 ◽  
Author(s):  
Abreu ◽  
Soares ◽  
Carvalho ◽  
Morais ◽  
Simão ◽  
...  

Challenges in the coordination between the transmission system operator (TSO) and the distribution system operator (DSO) have risen continuously with the integration of distributed energy resources (DER). These technologies have the possibility to provide reactive power support for system operators. Considering the Portuguese reactive power policy as an example of the regulatory framework, this paper proposes a methodology for proactive reactive power management of the DSO using the renewable energy sources (RES) considering forecast uncertainty available in the distribution system. The proposed method applies a stochastic sequential alternative current (AC)-optimal power flow (SOPF) that returns trustworthy solutions for the DSO and optimizes the use of reactive power between the DSO and DER. The method is validated using a 37-bus distribution network considering real data. Results proved that the method improves the reactive power management by taking advantage of the full capabilities of the DER and by reducing the injection of reactive power by the TSO in the distribution network and, therefore, reducing losses.


Sign in / Sign up

Export Citation Format

Share Document