High-speed digital controllers using an 8 bit microprocessor

1985 ◽  
Vol 4 (5-6) ◽  
pp. 109 ◽  
Author(s):  
R.M. Goodall ◽  
D.S. Brown
Machines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 56 ◽  
Author(s):  
Chiu-Keng Lai ◽  
Jhang-Shan Ciou ◽  
Chia-Che Tsai

Owing to the benefits of programmable and parallel processing of field programmable gate arrays (FPGAs), they have been widely used for the realization of digital controllers and motor drive systems. Furthermore, they can be used to integrate several functions as an embedded system. In this paper, based on Matrix Laboratory (Matlab)/Simulink and the FPGA chip, we design and implement a stepper motor drive. Generally, motion control systems driven by a stepper motor can be in open-loop or closed-loop form, and pulse generators are used to generate a series of pulse commands, according to the desired acceleration/run/deceleration, in order to the drive system to rotate the motor. In this paper, the speed and position are designed in closed-loop control, and a vector control strategy is applied to the obtained rotor angle to regulate the phase current of the stepper motor to achieve the performance of operating it in low, medium, and high speed situations. The results of simulations and practical experiments based on the FPGA implemented control system are given to show the performances for wide range speed control.


2018 ◽  
Vol 8 (8) ◽  
pp. 1270 ◽  
Author(s):  
Hsin-Lin Chiu ◽  
Nan-Chyuan Tsai

A compact-design hybrid power amplifier for AMB (active magnetic bearing) units, named as dual cooperative drive circuit (DC2), is designed and verified by intensive experiments. DC2 can operate under dual mode: either digital driving mode (DDM) or analog driving mode (ADM). By taking advantages of the complementary cooperation between DDM and ADM, the proposed DC2 manifests its superiorities mainly in three aspects: (i) Compared to a traditional 2-level PWM (pulse width modulation) drive circuit, the improvement degree of reducing the amplitudes of current ripples is up to 62%. (ii) By taking advantages of mutually complementary cooperation between DDM and ADM, the steady-state errors of output current, which is exerted to the coils of AMBs, can be much reduced by DC2. (iii) DC2 can provide a high-current slew rate so that the response of AMBs is fast and quick enough to regulate the high-speed rotor back to the neutral position within a very short time period below 0.40 ms. In addition, the proposed DC2 is particularly suitable to be compliant with digital controllers and DSPs (digital signal processors) since the commands or drive sequences are all in DC (direct current) manner.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
William Krakow

In the past few years on-line digital television frame store devices coupled to computers have been employed to attempt to measure the microscope parameters of defocus and astigmatism. The ultimate goal of such tasks is to fully adjust the operating parameters of the microscope and obtain an optimum image for viewing in terms of its information content. The initial approach to this problem, for high resolution TEM imaging, was to obtain the power spectrum from the Fourier transform of an image, find the contrast transfer function oscillation maxima, and subsequently correct the image. This technique requires a fast computer, a direct memory access device and even an array processor to accomplish these tasks on limited size arrays in a few seconds per image. It is not clear that the power spectrum could be used for more than defocus correction since the correction of astigmatism is a formidable problem of pattern recognition.


Author(s):  
C. O. Jung ◽  
S. J. Krause ◽  
S.R. Wilson

Silicon-on-insulator (SOI) structures have excellent potential for future use in radiation hardened and high speed integrated circuits. For device fabrication in SOI material a high quality superficial Si layer above a buried oxide layer is required. Recently, Celler et al. reported that post-implantation annealing of oxygen implanted SOI at very high temperatures would eliminate virtually all defects and precipiates in the superficial Si layer. In this work we are reporting on the effect of three different post implantation annealing cycles on the structure of oxygen implanted SOI samples which were implanted under the same conditions.


Author(s):  
Z. Liliental-Weber ◽  
C. Nelson ◽  
R. Ludeke ◽  
R. Gronsky ◽  
J. Washburn

The properties of metal/semiconductor interfaces have received considerable attention over the past few years, and the Al/GaAs system is of special interest because of its potential use in high-speed logic integrated optics, and microwave applications. For such materials a detailed knowledge of the geometric and electronic structure of the interface is fundamental to an understanding of the electrical properties of the contact. It is well known that the properties of Schottky contacts are established within a few atomic layers of the deposited metal. Therefore surface contamination can play a significant role. A method for fabricating contamination-free interfaces is absolutely necessary for reproducible properties, and molecularbeam epitaxy (MBE) offers such advantages for in-situ metal deposition under UHV conditions


Author(s):  
Brian Cross

A relatively new entry, in the field of microscopy, is the Scanning X-Ray Fluorescence Microscope (SXRFM). Using this type of instrument (e.g. Kevex Omicron X-ray Microprobe), one can obtain multiple elemental x-ray images, from the analysis of materials which show heterogeneity. The SXRFM obtains images by collimating an x-ray beam (e.g. 100 μm diameter), and then scanning the sample with a high-speed x-y stage. To speed up the image acquisition, data is acquired "on-the-fly" by slew-scanning the stage along the x-axis, like a TV or SEM scan. To reduce the overhead from "fly-back," the images can be acquired by bi-directional scanning of the x-axis. This results in very little overhead with the re-positioning of the sample stage. The image acquisition rate is dominated by the x-ray acquisition rate. Therefore, the total x-ray image acquisition rate, using the SXRFM, is very comparable to an SEM. Although the x-ray spatial resolution of the SXRFM is worse than an SEM (say 100 vs. 2 μm), there are several other advantages.


Sign in / Sign up

Export Citation Format

Share Document