free interfaces
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Fangsheng Qian ◽  
Xiaobo Bu ◽  
Junjie Wang ◽  
Ziyu Lv ◽  
Su-Ting Han ◽  
...  

Abstract Brain-inspired neuromorphic computing has been extensively researched, taking advantage of increased computer power, the acquisition of massive data, and algorithm optimization. Neuromorphic computing requires mimicking synaptic plasticity and enables near-in-sensor computing. In synaptic transistors, how to elaborate and examine the link between microstructure and characteristics is a major difficulty. Due to the absence of interlayer shielding effects, defect-free interfaces, and wide spectrum responses, reducing the thickness of organic crystals to the 2D limit has a lot of application possibilities in this computing paradigm. This paper presents an update on the progress of 2D organic crystal-based transistors for data storage and neuromorphic computing. The promises and synthesis methodologies of 2D organic crystals are summarized. Following that, applications of 2D organic crystals for ferroelectric nonvolatile memory, circuit-type optoelectronic synapses, and neuromorphic computing are addressed. Finally, new insights and challenges for the field's future prospects are presented, pushing the boundaries of neuromorphic computing even farther.


Ceramics ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 681-695
Author(s):  
Jonas Biggemann ◽  
David Köllner ◽  
Swantje Simon ◽  
Paula Heik ◽  
Patrizia Hoffmann ◽  
...  

Porous functional graded ceramics (porous FGCs) offer immense potential to overcome the low mechanical strengths of homogeneously porous bioceramics used as bone grafts. The tailored manipulation of the graded pore structure including the interfaces in these materials is of particular interest to locally control the microstructural and mechanical properties, as well as the biological response of the potential implant. In this work, porous FGCs with integrated interface textures were fabricated by a novel two-step transfer micro-molding technique using alumina and hydroxyapatite feedstocks with varied amounts of spherical pore formers (0–40 Vol%) to generate well-defined porosities. Defect-free interfaces could be realized for various porosity pairings, leading to porous FGCs with continuous and discontinuous transition of porosity. The microstructure of three different periodic interface patterns (planar, 2D-linear waves and 3D-Gaussian hills) was investigated by SEM and µCT and showed a shape accurate replication of the CAD-designed model in the ceramic sample. The Young’s modulus and flexural strength of bi-layered bending bars with 0 and 30 Vol% of pore formers were determined and compared to homogeneous porous alumina and hydroxyapaite containing 0–40 Vol% of pore formers. A significant reduction of the Young’s modulus was observed for the porous FGCs, attributed to damping effects at the interface. Flexural 4-point-testing revealed that the failure did not occur at the interface, but rather in the porous 30 Vol% layer, proving that the interface does not represent a source of weakness in the microstructure.


2021 ◽  
Vol 11 (19) ◽  
pp. 9109
Author(s):  
Avriel Cartwright ◽  
Jian Du

Microorganisms often swim within heterogeneous fluid media composed of multiple materials with very different properties. The swimming speed is greatly affected by the composition and rheology of the fluidic environment. In addition, biological locomotions are also strongly influenced by the presence of phase boundaries and free interfaces, across which physical properties of the fluid media may vary significantly. Using a two-fluid immersed boundary method, we investigate the classical Taylor’s swimming sheet problem near interfaces within multi-fluid media. The accuracy of the methodology is illustrated through comparisons with analytical solutions. Our simulation results indicate that the interface dynamics and phase separation in the multi-fluid mixture are closely coupled with the movement of the swimmer. Depending on the interface location, the frictional coefficient, and the multi-fluid composition, the swimmer can move faster or slower than that in a single phase fluid.


Author(s):  
Muhammad Waseem Iqbal

This article analyzes several User Interface (UI) designs and puts forward some more general design principles for interfaces designed for low-literate users. The results of this study highlight the importance of text-free interfaces compared to text-based interfaces for the illiterate and low-literate population. The study developed a Short Message Service (SMS) interface consisting of many design elements, including graphical icons, voice, and text reduction. The participants were more satisfied with the designed SMS interface as compared to the traditional text-based interface of SMS. We believe that if the user interface is appropriately designed, users will not need formal literacy, computer skills, or any external help to operate the application. It has been shown that an interface with minimal or no text but one or more graphics, audio, and digital components is helpful for users with low literacy rates.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaowei Wang ◽  
Chao Zhu ◽  
Ya Deng ◽  
Ruihuan Duan ◽  
Jieqiong Chen ◽  
...  

AbstractThe limited memory retention for a ferroelectric field-effect transistor has prevented the commercialization of its nonvolatile memory potential using the commercially available ferroelectrics. Here, we show a long-retention ferroelectric transistor memory cell featuring a metal-ferroelectric-metal-insulator-semiconductor architecture built from all van der Waals single crystals. Our device exhibits 17 mV dec−1 operation, a memory window larger than 3.8 V, and program/erase ratio greater than 107. Thanks to the trap-free interfaces and the minimized depolarization effects via van der Waals engineering, more than 104 cycles endurance, a 10-year memory retention and sub-5 μs program/erase speed are achieved. A single pulse as short as 100 ns is enough for polarization reversal, and a 4-bit/cell operation of a van der Waals ferroelectric transistor is demonstrated under a 100 ns pulse train. These device characteristics suggest that van der Waals engineering is a promising direction to improve ferroelectronic memory performance and reliability for future applications.


2021 ◽  
Vol 14 (2) ◽  
pp. 575-596
Author(s):  
Claude-Michel Brauner ◽  
◽  
Luca Lorenzi ◽  
◽  

2020 ◽  
Vol 117 (41) ◽  
pp. 25407-25413
Author(s):  
Robert J. S. Ivancic ◽  
Robert A. Riggleman

After more than two decades of study, many fundamental questions remain unanswered about the dynamics of glass-forming materials confined to thin films. Experiments and simulations indicate that free interfaces enhance dynamics over length scales larger than molecular sizes, and this effect strengthens at lower temperatures. The nature of the influence of interfaces, however, remains a point of significant debate. In this work, we explore the properties of the nonequilibrium phase transition in dynamics that occurs in trajectory space between high- and low-mobility basins in a set of model polymer freestanding films. In thick films, the film-averaged mobility transition is broader than the bulk mobility transition, while in thin films it is a variant of the bulk result shifted toward a higher bias. Plotting this transition’s local coexistence points against the distance from the films’ surface shows thick films have surface and film-center transitions, while thin films practically have a single transition throughout the film. These observations are reminiscent of thermodynamic capillary condensation of a vapor–liquid phase between parallel plates, suggesting they constitute a demonstration of such an effect in a trajectory phase transition in the dynamics of a structural glass former. Moreover, this transition bears similarities to several experiments exhibiting anomalous behavior in the glass transition upon reducing film thickness below a material-dependent onset, including the broadening of the glass transition and the homogenization of surface and bulk glass transition temperatures.


2020 ◽  
Vol 268 (7) ◽  
pp. 3962-4016 ◽  
Author(s):  
D. Addona ◽  
C.-M. Brauner ◽  
L. Lorenzi ◽  
W. Zhang

2020 ◽  
Vol 17 (3) ◽  
pp. 759-777
Author(s):  
Zhanmao Cao ◽  
Qisong Huang ◽  
Chase Wu

Multi-radio multi-channel (MRMC) wireless mesh networks (WMNs) have emerged as the broadband networks to provide access to the Internet for ubiquitous computing with the support for a large number of data flows. Many applications in WMNs can be abstracted as a multi-flow coexistence problem to carry out multiple concurrent data transfers. More specifically, links in different channel layers must be concatenated to compose multiple data transfer paths based on nodes? free interfaces and available channels. This is typically formulated as a combinatorial optimization problem with various stages including channel assignment, path computing, and link scheduling. This paper analyzes traffic behaviors and designs a coexisting algorithm to maximize the number of concurrent data flows. Simulations are conducted in combinatorial cases of channel and radio with various traffic requests of multiple pairs. The experimental results show the efficacy of the coexisting algorithm over a randomly generated topology. This scheme can be used to develop routing and scheduling solutions for various multi-flow network applications through prior computing.


Sign in / Sign up

Export Citation Format

Share Document