scholarly journals Efficient measurement of power tower based on tilt photography with unmanned aerial vehicle and laser scanning

Author(s):  
Bin Xia ◽  
Zixin Li ◽  
Jianying Huang ◽  
Kaijun Zeng ◽  
Shiqiang Pang
2021 ◽  
Vol 13 (15) ◽  
pp. 2885
Author(s):  
Mei Li ◽  
Zengyuan Li ◽  
Qingwang Liu ◽  
Erxue Chen

Plantation forests play a critical role in forest products and ecosystems. Unmanned aerial vehicle (UAV) remote sensing has become a promising technology in forest related applications. The stand heights will reflect the growth and competition of individual trees in plantation. UAV laser scanning (ULS) and UAV stereo photogrammetry (USP) can both be used to estimate stand heights using different algorithms. Thus, this study aimed to deeply explore the variations of four kinds of stand heights including mean height, Lorey’s height, dominated height, and median height of coniferous plantations using different models based on ULS and USP data. In addition, the impacts of thinned point density of 30 pts to 10 pts, 5 pts, 1 pts, and 0.8 pts/m2 were also analyzed. Forest stand heights were estimated from ULS and USP data metrics by linear regression and the prediction accuracy was assessed by 10-fold cross validation. The results showed that the prediction accuracy of the stand heights using metrics from USP was basically as good as that of ULS. Lorey’s height had the highest prediction accuracy, followed by dominated height, mean height, and median height. The correlation between height percentiles metrics from ULS and USP increased with the increased height. Different stand heights had their corresponding best height percentiles as variables based on stand height characteristics. Furthermore, canopy height model (CHM)-based metrics performed slightly better than normalized point cloud (NPC)-based metrics. The USP was not able to extract exact terrain information in a continuous coniferous plantation for forest canopy cover (CC) over 0.49. The combination of USP and terrain from ULS can be used to estimate forest stand heights with high accuracy. In addition, the estimation accuracy of each forest stand height was slightly affected by point density, which can also be ignored.


2020 ◽  
Vol 50 (10) ◽  
pp. 1012-1024
Author(s):  
Meimei Wang ◽  
Jiayuan Lin

Individual tree height (ITH) is one of the most important vertical structure parameters of a forest. Field measurement and laser scanning are very expensive for large forests. In this paper, we propose a cost-effective method to acquire ITHs in a forest using the optical overlapping images captured by an unmanned aerial vehicle (UAV). The data sets, including a point cloud, a digital surface model (DSM), and a digital orthorectified map (DOM), were produced from the UAV imagery. The canopy height model (CHM) was obtained by subtracting the digital elevation model (DEM) from the DSM removed of low vegetation. Object-based image analysis was used to extract individual tree crowns (ITCs) from the DOM, and ITHs were initially extracted by overlaying ITC outlines on the CHM. As the extracted ITHs were generally slightly shorter than the measured ITHs, a linear relationship was established between them. The final ITHs of the test site were retrieved by inputting extracted ITHs into the linear regression model. As a result, the coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the mean relative error (MRE) of the retrieved ITHs against the measured ITHs were 0.92, 1.08 m, 0.76 m, and 0.08, respectively.


2014 ◽  
Vol 67 (1) ◽  
Author(s):  
Norashikin M. Thamrin ◽  
Norhashim Mohd. Arshad ◽  
Ramli Adnan ◽  
Rosidah Sam ◽  
Noorfazdli Abd. Razak ◽  
...  

In Simultaneous Localization and Mapping (SLAM) technique, recognizing and marking the landmarks in the environment is very important. Therefore, in a commercial farm, rows of trees, borderline of rows as well as the trees and other features are mostly used by the researchers in realizing the automation process in this field. In this paper, the detection of the tree based on its diameter is focused. There are few techniques available in determining the size of the tree trunk inclusive of the laser scanning method as well as image-based measurements. However, those techniques require heavy computations and equipments which become constraints in a lightweight unmanned aerial vehicle implementation. Therefore, in this paper, the detection of an object by using a single and multiple infrared sensors on a non-stationary automated vehicle platform is discussed. The experiments were executed on different size of objects in order to investigate the effectiveness of this proposed method. This work is initially tested on the ground, based in the lab environment by using an omni directional vehicle which later will be adapted on a small-scale unmanned aerial vehicle implementation for tree diameter estimation in the agriculture farm.  In the current study, comparing multiple sensors with single sensor orientation showed that the average percentage of the pass rate in the pole recognition for the former is relatively more accurate than the latter with 93.2 percent and 74.2 percent, respectively. 


2019 ◽  
Vol 8 (2) ◽  
pp. 53 ◽  
Author(s):  
Young Jo ◽  
Seonghyuk Hong

Three-dimensional digital technology is important in the maintenance and monitoring of cultural heritage sites. This study focuses on using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry to establish a three-dimensional model and the associated digital documentation of the Magoksa Temple, Republic of Korea. Herein, terrestrial laser scanning and UAV photogrammetry was used to acquire the perpendicular geometry of the buildings and sites, where UAV photogrammetry yielded higher planar data acquisition rate in upper zones, such as the roof of a building, than terrestrial laser scanning. On comparing the two technologies’ accuracy based on their ground control points, laser scanning was observed to provide higher positional accuracy than photogrammetry. The overall discrepancy between the two technologies was found to be sufficient for the generation of convergent data. Thus, the terrestrial laser scanning and UAV photogrammetry data were aligned and merged post conversion into compatible extensions. A three-dimensional (3D) model, with planar and perpendicular geometries, based on the hybrid data-point cloud was developed. This study demonstrates the potential for using the integration of terrestrial laser scanning and UAV photogrammetry in 3D digital documentation and spatial analysis of cultural heritage sites.


Author(s):  
A. Mayr ◽  
M. Bremer ◽  
M. Rutzinger ◽  
C. Geitner

<p><strong>Abstract.</strong> With this contribution we assess the potential of unmanned aerial vehicle (UAV) based laser scanning for monitoring shallow erosion in Alpine grassland. A 3D point cloud has been acquired by unmanned aerial vehicle laser scanning (ULS) at a test site in the subalpine/alpine elevation zone of the Dolomites (South Tyrol, Italy). To assess its accuracy, this point cloud is compared with (i) differential global navigation satellite system (GNSS) reference measurements and (ii) a terrestrial laser scanning (TLS) point cloud. The ULS point cloud and an airborne laser scanning (ALS) point cloud are rasterized into digital surface models (DSMs) and, as a proof-of-concept for erosion quantification, we calculate the elevation difference between the ULS DSM from 2018 and the ALS DSM from 2010. For contiguous spatial objects of elevation change, the volumetric difference is calculated and a land cover class (<i>bare earth</i>, <i>grassland</i>, <i>trees</i>), derived from the ULS reflectance and RGB colour, is assigned to each change object. In this test, the accuracy and density of the ALS point cloud is mainly limiting the detection of geomorphological changes. Nevertheless, the plausibility of the results is confirmed by geomorphological interpretation and documentation in the field. A total eroded volume of 672&amp;thinsp;m<sup>3</sup> is estimated for the test site (48&amp;thinsp;ha). Such volumetric estimates of erosion over multiple years are a key information for improving sustainable soil management. Based on this proof-of-concept and the accuracy analysis, we conclude that repeated ULS campaigns are a well-suited tool for erosion monitoring in Alpine grassland.</p>


Author(s):  
Y. H. Jo ◽  
J.Y. Kim

Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5555 ◽  
Author(s):  
Ying Quan ◽  
Mingze Li ◽  
Zhen Zhen ◽  
Yuanshuo Hao ◽  
Bin Wang

Unmanned aerial vehicle (UAV) laser scanning, as an emerging form of near-ground light detection and ranging (LiDAR) remote sensing technology, is widely used for crown structure extraction due to its flexibility, convenience, and high point density. Herein, we evaluated the feasibility of using a low-cost UAV-LiDAR system to extract the fine-scale crown profile of Larix olgensis. Specifically, individual trees were isolated from LiDAR point clouds and then stratified from the point clouds of segmented individual tree crowns at 0.5 m intervals to obtain the width percentiles of each layer as profile points. Four equations (the parabola, Mitscherlich, power, and modified beta equations) were then applied to model the profiles of the entire and upper crown. The results showed that a region-based hierarchical cross-section analysis algorithm can successfully delineate 77.4% of the field-measured trees in high-density (>2400 trees/ha) forest stands. The crown profile generated with the 95th width percentile was adequate when compared with the predicted value of the existing field-based crown profile model (the Pearson correlation coefficient (ρ) was 0.864, root mean square error (RMSE) = 0.3354 m). The modified beta equation yielded slightly better results than the other equations for crown profile fitting and explained 85.9% of the variability in the crown radius for the entire crown and 87.8% of this variability for the upper crown. Compared with the cone and 3D convex hull volumes, the crown volumes predicted by our profile models had significantly smaller errors. The results revealed that the crown profile can be well described by using UAV-LiDAR, providing a novel way to obtain crown profile information without destructive sampling and showing the potential of the use of UAV-LiDAR in future forestry investigations and monitoring.


Sign in / Sign up

Export Citation Format

Share Document