scholarly journals Gaia Data Release 2

2018 ◽  
Vol 616 ◽  
pp. A16 ◽  
Author(s):  
A. C. Lanzafame ◽  
E. Distefano ◽  
S. Messina ◽  
I. Pagano ◽  
A. F. Lanza ◽  
...  

Context. Amongst the ≈5 × 105 sources identified as variable stars in Gaia Data Release 2 (DR2), 26% are rotational modulation variable candidates of the BY Dra class. Gaia DR2 provides their multi-band (G, GBP, and GRP) photometric time series collected by the European Space Agency spacecraft Gaia during the first 22 months of operations as well as the essential parameters related to their flux modulation induced by surface inhomogeneities and rotation. Aims. We developed methods to identify the BY Dra variable candidates and to infer their variability parameters. Methods. BY Dra candidates were pre-selected from their position in the Hertzsprung–Russel diagram, built from Gaia parallaxes, G magnitudes, and (GBP − GRP) colours. Since the time evolution of the stellar active region can disrupt the coherence of the signal, segments not much longer than their expected evolution timescale were extracted from the entire photometric time series, and period search algorithms were applied to each segment. For the Gaia DR2, we selected sources with similar periods in at least two segments as candidate BY Dra variables. Results were further filtered considering the time-series phase coverage and the expected approximate light-curve shape. Results. Gaia DR2 includes rotational periods and modulation amplitudes of 147 535 BY Dra candidates. The data unveil the existence of two populations with distinctive period and amplitude distributions. The sample covers 38% of the whole sky when divided into bins (HEALPix) of ≈0.84 square degrees, and we estimate that this represents 0.7–5% of all BY Dra stars potentially detectable with Gaia. Conclusions. The preliminary data contained in Gaia DR2 illustrate the vast and unique information that the mission is going to provide on stellar rotation and magnetic activity. This information, complemented by the exquisite Gaia parallaxes, proper motions, and astrophysical parameters, is opening new and unique perspectives for our understanding of the evolution of stellar angular momentum and dynamo action.

2018 ◽  
Vol 616 ◽  
pp. A2 ◽  
Author(s):  
L. Lindegren ◽  
J. Hernández ◽  
A. Bombrun ◽  
S. Klioner ◽  
U. Bastian ◽  
...  

Context. Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. Aims. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these resultsperformed within the astrometry task. Methods. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. These data were calculated in two steps. First, the satellite attitude and the astrometric calibration parameters of the CCDs were obtained in an astrometric global iterative solution for 16 million selected sources, using about 1% of the input data. This primary solution was tied to the extragalactic International Celestial Reference System (ICRS) by means of quasars. The resulting attitude and calibration were then used to calculate the astrometric parameters of all the sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion. Results. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G < 14 mag) sources, 0.1 mas at G = 17 mag, and 0.7 masat G = 20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas yr−1, respectively.The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas yr−1. From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas yr−1 in proper motion are seen on small (< 1 deg) and intermediate (20 deg) angular scales. Important statistics and information for the users of the Gaia DR2 astrometry are given in the appendices.


Author(s):  
Dinh Ho Tong Minh ◽  
Yen-Nhi NGO ◽  
Thu Trang Lê ◽  
Trung Chon Le ◽  
Hong Son Bui ◽  
...  

Ho Chi Minh City (HCMC), the most populous city and the economic center of Viet Nam, has faced ground subsidence in recent decades. This work aims at providing an unprecedented spatial extent coverage of the subsidence in HCMC in both horizontal and vertical components using Interferometric Synthetic Aperture Radar (InSAR) time series. For this purpose, an advanced InSAR technique PSDS (Permanent Scatterers and Distributed Scatterers) was applied to two big European Space Agency (ESA) Sentinel-1 datasets composed of 96 ascending and 202 descending images, acquired from 2014 to 2020 over HCMC area. A time series of 33 Cosmos SkyMED images was also used for comparison purpose. The combination of ascending and descending satellite passes allows the decomposition of the light of sight velocities into horizontal East-west and vertical components. By taking into account the presence of the horizontal East-west movement, our finding indicates that the precision of the decomposed vertical velocity can be improved up to 3 mm/year for Sentinel-1 data. The obtained results revealed that subsidence is most severe in areas along the Sai Gon river in the northwest-southeast axis and the southwest of the city with the maximum value up to 80 mm/year, consistent with findings in the literature. The magnitude of horizontal East-West velocities is relatively small and a large-scale westward motion can be observed in the northwest of the city at a rate of 2-5 mm/year. Together, these results reinforced the remarkable suitability of ESA's Sentinel-1 SAR for subsidence applications even for non-Europe countries such as Vietnam and Southeast Asia.


2018 ◽  
Vol 616 ◽  
pp. A13 ◽  
Author(s):  
◽  
F. Spoto ◽  
P. Tanga ◽  
F. Mignard ◽  
J. Berthier ◽  
...  

Context. The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center repository. Positions are provided for each Gaia observation at CCD level. As additional information, complementary to astrometry, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations. Aims. We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality. Methods. To exploit the main data product for the solar system in Gaia DR2, which is the epoch astrometry of asteroids, it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The role of both random and systematic errors is described. The distribution of residuals allowed us to identify possible contaminants in the data set (such as stars). Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP). Results. The overall astrometric performance is close to the expectations, with an optimal range of brightness G ~ 12 − 17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G ~ 12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by comparisons to the archive data and by preliminary tests on the detection of subtle non-gravitational effects.


2020 ◽  
Author(s):  
Jaime Pitarch ◽  
Marco Bellacicco ◽  
Salvatore Marullo ◽  
Hendrik J. van der Woerd

Abstract. We document the development and public release of a new dataset (1997–2018), consisting of global maps of the Forel-Ule index, hue angle and Secchi disk depth. Source data comes from the European Space Agency (ESA) Ocean Colour (OC) Climate Change Initiative (CCI), which is providing merged multi-sensor data from the mid-resolution sensors in operation at a specific time from 1997 to the present day. Multi-sensor satellite datasets are advantageous tools for ecological studies because they increase the probabilities of cloud-free data over a given region, as data from multiple satellites whose overpass times differ by a few hours are combined. Moreover, data merging from heritage and present satellites can expand the duration of the time series indefinitely, which allows the calculation of significant trends. Additionally, data are remapped consistently and analysis-ready for scientists. Also, the products described in this article have the exclusive advantage of being linkable to in-situ historic observations and thus enabling the construction of very long time series. Monthly data are presented at a spatial resolution of ~4 km at the equator and are available at PANGAEA, https://doi.org/10.1594/PANGAEA.904266 (Pitarch et al., 2019a). Two smaller and easier to handle test datasets have been produced from the former: a global dataset at 1 degree spatial resolution and another one for the North Atlantic at 0.25 degree resolution.


2016 ◽  
Vol 12 (S328) ◽  
pp. 69-76
Author(s):  
Adriana Valio

AbstractMagnetic activity of stars manifests itself in the form of dark spots on the stellar surface. This in turn will cause variations of a few percent in the star light curve as it rotates. When an orbiting planet eclipses its host a star, it may cross in front of one of these spots. In this case, a “bump” will be detected in the transit lightcurve. By fitting these spot signatures with a model, it is possible to determine the spots physical properties such as size, temperature, location, magnetic field, and lifetime. Moreover, the monitoring of the spots longitude provides estimates of the stellar rotation and differential rotation. For long time series of transits during multiple years, magnetic cycles can also be determined. This model has been applied successfully to CoRoT-2, CoRoT-4, CoRot-5, CoRoT-6, CoRoT-8, CoRoT-18, Kepler-17, and Kepler-63.


2018 ◽  
Vol 17 (1) ◽  
pp. 11-23
Author(s):  
Nidhi Sabu ◽  
Thomaskutty Francis ◽  
Arun Roy ◽  
Sreeja S Kartha

In this paper we attempt to study an ongoing astrometry mission of the European Space Agency (ESA), named Gaia, whose aim is to make the largest and most precise three-dimensional map of our Galaxy. We present the scientific goals of Gaia and give a brief description of the spacecraft. We also present a preliminary analysis of comparing distance estimates of Be stars from the first Gaia data release, Gaia DR1, and Hipparcos mission. From our analysis, we confirm that Gaia stands out as a promising mission in terms of the distance measurements when compared to Hipparcos, particularly for distances greater than 1 kpc.


2018 ◽  
Vol 618 ◽  
pp. A30 ◽  
Author(s):  
B. Holl ◽  
M. Audard ◽  
K. Nienartowicz ◽  
G. Jevardat de Fombelle ◽  
O. Marchal ◽  
...  

Context. The Gaia Data Release 2 (DR2) contains more than half a million sources that are identified as variable stars. Aims. We summarise the processing and results of the identification of variable source candidates of RR Lyrae stars, Cepheids, long-period variables (LPVs), rotation modulation (BY Dra-type) stars, δ Scuti and SX Phoenicis stars, and short-timescale variables. In this release we aim to provide useful but not necessarily complete samples of candidates. Methods. The processed Gaia data consist of the G, GBP, and GRP photometry during the first 22 months of operations as well as positions and parallaxes. Various methods from classical statistics, data mining, and time-series analysis were applied and tailored to the specific properties of Gaia data, as were various visualisation tools to interpret the data. Results. The DR2 variability release contains 228 904 RR Lyrae stars, 11 438 Cepheids, 151 761 LPVs, 147 535 stars with rotation modulation, 8882 δ Scuti and SX Phoenicis stars, and 3018 short-timescale variables. These results are distributed over a classification and various Specific Object Studies tables in the Gaia archive, along with the three-band time series and associated statistics for the underlying 550 737 unique sources. We estimate that about half of them are newly identified variables. The variability type completeness varies strongly as a function of sky position as a result of the non-uniform sky coverage and intermediate calibration level of these data. The probabilistic and automated nature of this work implies certain completeness and contamination rates that are quantified so that users can anticipate their effects. Thismeans that even well-known variable sources can be missed or misidentified in the published data. Conclusions. The DR2 variability release only represents a small subset of the processed data. Future releases will include more variable sources and data products; however, DR2 shows the (already) very high quality of the data and great promise for variability studies.


2020 ◽  
Vol 12 (16) ◽  
pp. 2595
Author(s):  
Fuqun Zhou ◽  
Detang Zhong ◽  
Rihana Peiman

Time-series for medium spatial resolution satellite imagery are a valuable resource for environmental assessment and monitoring at regional and local scales. Sentinel-2 satellites from the European Space Agency (ESA) feature a multispectral instrument (MSI) with 13 spectral bands and spatial resolutions from 10 m to 60 m, offering a revisit range from 5 days at the equator to a daily approach of the poles. Since their launch, the Sentinel-2 MSI image time-series from satellites have been used widely in various environmental studies. However, the values of Sentinel-2 image time-series have not been fully realized and their usage is impeded by cloud contamination on images, especially in cloudy regions. To increase cloud-free image availability and usage of the time-series, this study attempted to reconstruct a Sentinel-2 cloud-free image time-series using an extended spatiotemporal image fusion approach. First, a spatiotemporal image fusion model was applied to predict synthetic Sentinel-2 images when clear-sky images were not available. Second, the cloudy and cloud shadow pixels of the cloud contaminated images were identified based on analysis of the differences of the synthetic and observation image pairs. Third, the cloudy and cloud shadow pixels were replaced by the corresponding pixels of its synthetic image. Lastly, the pixels from the synthetic image were radiometrically calibrated to the observation image via a normalization process. With these processes, we can reconstruct a full length cloud-free Sentinel-2 MSI image time-series to maximize the values of observation information by keeping observed cloud-free pixels and calibrating the synthetized images by using the observed cloud-free pixels as references for better quality.


2018 ◽  
Vol 617 ◽  
pp. A138 ◽  
Author(s):  
Michael Weiler

Context. The European Space Agency mission Gaia has published, with its second data release (DR2), a catalogue of photometric measurements for more than 1.3 billion astronomical objects in three passbands. The precision of the measurements in these passbands, denoted G, GBP, and GRP, reach down to the milli-magnitude level. The scientific exploitation of this data set requires precise knowledge of the response curves of the three passbands. Aims. This work aims to improve the exploitation of the photometric data by deriving an improved set of response curves for the three passbands, allowing for an accurate computation of synthetic Gaia photometry. Methods. This is achieved by formulating the problem of passband determination in a functional analytic formalism, and linking the photometric measurements with four observational, one empirical, and one theoretical spectral library. Results. We present response curves for G, GBP, and GRP that differ from the previously published curves, and which provide a better agreement between synthetic Gaia photometry and Gaia observations.


2019 ◽  
Vol 11 (14) ◽  
pp. 1672 ◽  
Author(s):  
Stine Kildegaard Rose ◽  
Ole Baltazar Andersen ◽  
Marcello Passaro ◽  
Carsten Ankjær Ludwigsen ◽  
Christian Schwatke

In recent years, there has been a large focus on the Arctic due to the rapid changes of the region. Arctic sea level determination is challenging due to the seasonal to permanent sea-ice cover, lack of regional coverage of satellites, satellite instruments ability to measure ice, insufficient geophysical models, residual orbit errors, challenging retracking of satellite altimeter data. We present the European Space Agency (ESA) Climate Change Initiative (CCI) Technical University of Denmark (DTU)/Technischen Universität München (TUM) sea level anomaly (SLA) record based on radar satellite altimetry data in the Arctic Ocean from the European Remote Sensing satellite number 1 (ERS-1) (1991) to CryoSat-2 (2018). We use updated geophysical corrections and a combination of altimeter data: Reprocessing of Altimeter Product for ERS (REAPER) (ERS-1), ALES+ retracker (ERS-2, Envisat), combination of Radar Altimetry Database System (RADS) and DTUs in-house retracker LARS (CryoSat-2). Furthermore, this study focuses on the transition between conventional and Synthetic Aperture Radar (SAR) altimeter data to make a smooth time series regarding the measurement method. We find a sea level rise of 1.54 mm/year from September 1991 to September 2018 with a 95% confidence interval from 1.16 to 1.81 mm/year. ERS-1 data is troublesome and when ignoring this satellite the SLA trend becomes 2.22 mm/year with a 95% confidence interval within 1.67–2.54 mm/year. Evaluating the SLA trends in 5 year intervals show a clear steepening of the SLA trend around 2004. The sea level anomaly record is validated against tide gauges and show good results. Additionally, the time series is split and evaluated in space and time.


Sign in / Sign up

Export Citation Format

Share Document