scholarly journals Connecting planet formation and astrochemistry

2019 ◽  
Vol 627 ◽  
pp. A127 ◽  
Author(s):  
Alexander J. Cridland ◽  
Christian Eistrup ◽  
Ewine F. van Dishoeck

Combining a time-dependent astrochemical model with a model of planet formation and migration, we compute the carbon-to-oxygen ratio (C/O) of a range of planetary embryos starting their formation in the inner solar system (1–3 AU). Most of the embryos result in hot Jupiters (M ≥ MJ, orbital radius <0.1 AU) while the others result in super-Earths at wider orbital radii. The volatile and ice abundance of relevant carbon and oxygen bearing molecular species are determined through a complex chemical kinetic code that includes both gas and grain surface chemistry. This is combined with a model for the abundance of the refractory dust grains to compute the total carbon and oxygen abundance in the protoplanetary disk available for incorporation into a planetary atmosphere. We include the effects of the refractory carbon depletion that has been observed in our solar system, and posit two models that would put this missing carbon back into the gas phase. This excess gaseous carbon then becomes important in determining the final planetary C/O because the gas disk now becomes more carbon rich relative to oxygen (high gaseous C/O). One model, where the carbon excess is maintained throughout the lifetime of the disk results in hot Jupiters that have super-stellar C/O. The other model deposits the excess carbon early in the disk life and allows it to advect with the bulk gas. In this model the excess carbon disappears into the host star within 0.8 Myr, returning the gas disk to its original (substellar) C/O, so the hot Jupiters all exclusively have substellar C/O. This shows that while the solids tend to be oxygen rich, hot Jupiters can have super-stellar C/O if a carbon excess can be maintained by some chemical processing of the dust grains. The atmospheric C/O of the super-Earths at larger radii are determined by the chemical interactions between the gas and ice phases of volatile species rather than the refractory carbon model. Whether the carbon and oxygen content of the atmosphere was accreted primarily by gas or solid accretion is heavily dependent on the mass of the atmosphere and where in the disk the growing planet accreted.

2010 ◽  
Vol 6 (S276) ◽  
pp. 230-237
Author(s):  
Joshua N. Winn

AbstractThere are now more than 35 stars with transiting planets for which the stellar obliquity—or more precisely its sky projection—has been measured, via the eponymous effect of Rossiter and McLaughlin. The history of these measurements is intriguing. For 8 years a case was gradually building that the orbits of hot Jupiters are always well-aligned with the rotation of their parent stars. Then in a sudden reversal, many misaligned systems were found, and it now seems that even retrograde systems are not uncommon. I review the measurement technique underlying these discoveries, the patterns that have emerged from the data, and the implications for theories of planet formation and migration.


2019 ◽  
Vol 632 ◽  
pp. A63 ◽  
Author(s):  
Alex J. Cridland ◽  
Ewine F. van Dishoeck ◽  
Matthew Alessi ◽  
Ralph E. Pudritz

To understand the role that planet formation history has on the observable atmospheric carbon-to-oxygen ratio (C/O) we have produced a population of astrochemically evolving protoplanetary disks. Based on the parameters used in a pre-computed population of growing planets, their combination allows us to trace the molecular abundances of the gas that is being collected into planetary atmospheres. We include atmospheric pollution of incoming (icy) planetesimals as well as the effect of refractory carbon erosion noted to exist in our own solar system. We find that the carbon and oxygen content of Neptune-mass planets are determined primarily through solid accretion and result in more oxygen-rich (by roughly two orders of magnitude) atmospheres than hot Jupiters, whose C/O are primarily determined by gas accretion. Generally we find a “main sequence” between the fraction of planetary mass accreted through solid accretion and the resulting atmospheric C/O; planets of higher solid accretion fraction have lower C/O. Hot Jupiters whose atmospheres have been chemically characterized agree well with our population of planets, and our results suggest that hot-Jupiter formation typically begins near the water ice line. Lower mass hot Neptunes are observed to be much more carbon rich (with 0.33 ≲ C/O ≲ 1) than is found in our models (C/O ~ 10−2), and suggest that some form of chemical processing may affect their observed C/O over the few billion years between formation and observation. Our population reproduces the general mass-metallicity trend of the solar system and qualitatively reproduces the C/O metallicity anti-correlation that has been inferred for the population of characterized exoplanetary atmospheres.


2020 ◽  
Author(s):  
Luis Welbanks ◽  
Nikku Madhusudhan ◽  
Nicole F. Allard ◽  
Ivan Hubeny ◽  
Fernand Spiegelman ◽  
...  

&lt;p&gt;Atmospheric compositions can provide powerful diagnostics of formation and migration histories of planetary systems. In this talk, I will present the results of our latest survey of atmospheric compositions focused on atmospheric abundances of H&lt;sub&gt;2&lt;/sub&gt;O, Na, and K. We employ a sample of 19 exoplanets spanning from cool mini-Neptunes to hot Jupiters, with equilibrium temperatures between ~300 and 2700 K. We employ the latest transmission spectra, new H&lt;sub&gt;2&lt;/sub&gt; broadened opacities of Na and K, and homogeneous Bayesian retrievals. We confirm detections of H&lt;sub&gt;2&lt;/sub&gt;O in 14 planets and detections of Na and K in 6 planets each. Among our sample, we find a mass-metallicity trend of increasing H&lt;sub&gt;2&lt;/sub&gt;O abundances with decreasing mass, spanning generally substellar values for gas giants and stellar/superstellar for Neptunes and mini-Neptunes. However, the overall trend in H&lt;sub&gt;2&lt;/sub&gt;O abundances, is significantly lower than the mass-metallicity relation for carbon in the solar system giant planets and similar predictions for exoplanets. On the other hand, the Na and K abundances for the gas giants are stellar or superstellar, consistent with each other, and generally consistent with the solar system metallicity trend. The H&lt;sub&gt;2&lt;/sub&gt;O abundances in hot gas giants are likely due to low oxygen abundances relative to other elements rather than low overall metallicities, and provide new constraints on their formation mechanisms. Our results show that the differing trends in the abundances of species argue against the use of chemical equilibrium models with metallicity as one free parameter in atmospheric retrievals, as different elements can be differently enhanced.&lt;/p&gt;


2021 ◽  
Vol 914 (1) ◽  
pp. 12
Author(s):  
Joshua D. Lothringer ◽  
Zafar Rustamkulov ◽  
David K. Sing ◽  
Neale P. Gibson ◽  
Jamie Wilson ◽  
...  

2018 ◽  
Vol 612 ◽  
pp. A93 ◽  
Author(s):  
J. Maldonado ◽  
E. Villaver ◽  
C. Eiroa

Context. The current paradigm to explain the presence of Jupiter-like planets with small orbital periods (P < 10 days; hot Jupiters), which involves their formation beyond the snow line following inward migration, has been challenged by recent works that explore the possibility of in situ formation. Aims. We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Methods. Our methodology is based on the analysis of high-resolution échelle spectra. Stellar parameters and abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, and Zn for a sample of 88 planet hosts are derived. The sample is divided into stars hosting hot (a < 0.1 au) and cool (a > 0.1 au) Jupiter-like planets. The metallicity and abundance trends of the two sub-samples are compared and set in the context of current models of planet formation and migration. Results. Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding p-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, <0.01, 0.81, and 0.16 for metallicity, α, iron-peak, and volatile elements, respectively. We confirm previous works suggesting that more distant planets show higher planetary masses as well as larger eccentricities. We note differences in age and spectral type between the hot and cool planet host samples that might affect the abundance comparison. Conclusions. The differences in the distribution of planetary mass, period, eccentricity, and stellar host metallicity suggest a different formation mechanism for hot and cool Jupiters. The slightly larger α abundances found in stars harbouring cool Jupiters might compensate their lower metallicities allowing the formation of gas-giant planets.


2021 ◽  
Author(s):  
Lorenzo Pino ◽  
Matteo Brogi ◽  
Jean-Michel Désert ◽  
Emily Rauscher

&lt;p&gt;Ultra-hot Jupiters (UHJs; T&lt;sub&gt;eq&lt;/sub&gt; &amp;#8805; 2500 K) are the hottest gaseous giants known. They emerged as ideal laboratories to test theories of atmospheric structure and its link to planet formation. Indeed, because of their high temperatures, (1) they likely host atmospheres in chemical equilibrium and (2) clouds do not form in their day-side. Their continuum, which can be measured with space-facilities, can be mostly attributed to H- opacity, an indicator of metallicity. From the ground, the high spectral resolution emission spectra of UHJs contains thousands of lines of refractory (Fe, Ti, TiO, &amp;#8230;) and volatile species (OH, CO, &amp;#8230;), whose combined atmospheric abundances could track planet formation history in a unique way. In this talk, we take a deeper look to the optical emission spectrum of KELT-9b covering planetary phases 0.25 - 0.75 (i.e. between secondary eclipse and quadrature), and search for the effect of atmospheric dynamics and three-dimensionality of the planet atmosphere on the resolved line profiles, in the context of a consolidated statistical framework. We discuss the suitability of the traditionally adopted 1D models to interprete phase-resolved observations of ultra-hot Jupiters, and the potential of this kind of observations to probe their 3D atmospheric structure and dynamics. Ultimately, understanding which factors affect the line-shape in UHJs will also lead to more accurate and more precise abundance measurements, opening a new window on exoplanet formation and evolution.&lt;/p&gt;


2018 ◽  
Vol 214 (1) ◽  
Author(s):  
Sijme-Jan Paardekooper ◽  
Anders Johansen

Author(s):  
Dmitry V. Bisikalo ◽  
Pavel V. Kaygorodov ◽  
Valery I. Shematovich

The history of exoplanetary atmospheres studies is strongly based on the observations and investigations of the gaseous envelopes of hot Jupiters—exoplanet gas giants that have masses comparable to the mass of Jupiter and orbital semi-major axes shorter than 0.1 AU. The first exoplanet around a solar-type star was a hot Jupiter discovered in 1995. Researchers found an object that had completely atypical parameters compared to planets known in the solar system. According to their estimates, the object might have a mass about a half of the Jovian mass and a very short orbital period (four days), which means that it has an orbit roughly corresponding to the orbit of Mercury. Later, many similar objects were discovered near different stars, and they acquired a common name—hot Jupiters. It is still unclear what the mechanism is for their origin, because generally accepted theories of planetary evolution predict the formation of giant planets only at large orbital distances, where they can accrete enough matter before the protoplanetary disc disappears. If this is true, before arriving at such low orbits, hot Jupiters might have a long migration path, caused by interactions with other massive planets and/or with the gaseous disc. In favor of this model is the discovery of many hot Jupiters in elliptical and highly inclined orbits, but on the other hand several observed hot Jupiters have circular orbits with low inclination. An alternative hypothesis is that the cores of future hot Jupiters are super-Earths that may later intercept matter from the protoplanetary disk falling on the star. The scientific interest in hot Jupiters has two aspects. The first is the peculiarity of these objects: they have no analogues in the solar system. The second is that, until recently, only for hot Jupiters was it possible to obtain observational characteristics of their atmospheres. Many of the known hot Jupiters are eclipsing their host stars, so, from their light curve and spectral data obtained during an eclipse, it became possible to obtain information about their shape and their atmospheric composition. Thus it is possible to conclude that hot Jupiters are a common type of exoplanet, having no analogues in the solar system. Many aspects of their evolution and internal structure remain unclear. Being very close to their host stars, hot Jupiters must interact with the stellar wind and stellar magnetic field, as well as with stellar flares and coronal mass ejections, allowing researchers to gather information about them. According to UV observations, at least a fraction of hot Jupiters have extended gaseous envelopes, extending far beyond of their upper atmospheres. The envelopes are observable with current astronomical instruments, so it is possible to develop their astrophysical models. The history of hot Jupiter atmosphere studies during the past 20 years and the current status of modern theories describing the extended envelopes of hot Jupiters are excellent examples of the progress in understanding planetary atmospheres formation and evolution both in the solar system and in the extrasolar planetary systems.


Sign in / Sign up

Export Citation Format

Share Document