scholarly journals H II regions and high-mass starless clump candidates

2020 ◽  
Vol 637 ◽  
pp. A40 ◽  
Author(s):  
S. Zhang ◽  
A. Zavagno ◽  
J. Yuan ◽  
H. Liu ◽  
M. Figueira ◽  
...  

Context. The role of ionization feedback on high-mass (>8 M⊙) star formation is still highly debated. Questions remain concerning the presence of nearby H II regions changes the properties of early high-mass star formation and whether H II regions promote or inhibit the formation of high-mass stars. Aims. To characterize the role of H II regions on the formation of high-mass stars, we study the properties of a sample of candidates high-mass starless clumps (HMSCs), of which about 90% have masses larger than 100 M⊙. These high-mass objects probably represent the earliest stages of high-mass star formation; we search if (and how) their properties are modified by the presence of an H II region. Methods. We took advantage of the recently published catalog of HMSC candidates. By cross matching the HMSCs and H II regions, we classified HMSCs into three categories: (1) the HMSCs associated with H II regions both in the position in the projected plane of the sky and in velocity; (2) HMSCs associated in the plane of the sky, but not in velocity; and (3) HMSCs far away from any H II regions in the projected sky plane. We carried out comparisons between associated and nonassociated HMSCs based on statistical analyses of multiwavelength data from infrared to radio. Results. We show that there are systematic differences of the properties of HMSCs in different environments. Statistical analyses suggest that HMSCs associated with H II regions are warmer, more luminous, more centrally-peaked and turbulent. We also clearly show, for the first time, that the ratio of bolometric luminosity to envelope mass of HMSCs (L∕M) could not be a reliable evolutionary probe for early massive star formation due to the external heating effects of the H II regions. Conclusions. We show HMSCs associated with H II regions present statistically significant differences from HMSCs far away from H II regions, especially for dust temperature and L∕M. More centrally peaked and turbulent properties of HMSCs associated with H II regions may promote the formation of high-mass stars by limiting fragmentation. High-resolution interferometric surveys toward HMSCs are crucial to reveal how H II regions impact the star formation process inside HMSCs.

Author(s):  
Kazuki Sato ◽  
Tetsuo Hasegawa ◽  
Tomofumi Umemoto ◽  
Hiro Saito ◽  
Nario Kuno ◽  
...  

Abstract We have developed a method to make a spectral-line-based survey of hot cores, which represent an important stage of high-mass star formation, and applied the method to the data of the FUGIN (FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope) survey. First, we select hot core candidates by searching the FUGIN data for the weak hot core tracer lines (HNCO and CH3CN) by stacking, and then we conduct follow-up pointed observations on these candidates in C34S, SO, OCS, HC3N, HNCO, CH3CN, and CH3OH J = 2–1 and J = 8–7 lines to confirm and characterize them. We applied this method to the l = 10°–20° portion of the FUGIN data and identified 22 “HotCores” (compact sources with more than two significant detections of the hot core tracer lines, i.e., SO, OCS, HC3N, HNCO, CH3CN, or CH3OH J = 8–7 lines) and 14 “DenseClumps” (sources with more than two significant detection of C34S, CH3OH J = 2–1, or the hot core tracer lines). The identified HotCores are found to be associated with signposts of high-mass star formation such as ATLASGAL clumps, WISE H ii regions, and Class II methanol masers. Many of the FUGIN HotCores are identified with the Herschel Hi-GAL clumps with a median mass of 6.8 × 102 M⊙ and a median bolometric luminosity of 7.4 × 103 L⊙. Five of the seven HotCores with stronger CH3CN lines exhibit elevated gas temperatures of 50–100 K. These observations suggest that FUGIN HotCores are closely related to the formation of stars with medium to high mass. For those associated with ATLASGAL clumps, their bolometric luminosity to clump mass ratios are consistent with the star formation stages centered at the hot core phase. The catalog of FUGIN HotCores provides a useful starting point for further statistical studies and detailed observations of high-mass star forming regions.


2017 ◽  
Vol 13 (S336) ◽  
pp. 193-200
Author(s):  
Maria T. Beltrán

AbstractThe formation process of high-mass stars has puzzled the astrophysical community for decades from both a theoretical and an observational point of view. Here, we present an overview of the current theories and status of the observational research on this field, outlining the progress achieved in recent years on our knowledge of the initial phases of massive star formation, the fragmentation of cold, infrared-dark clouds, and the evidence for circumstellar accretion disks around OB stars. The role of masers in helping us to understand the mechanism leading to the formation of a high-mass star are also discussed.


2020 ◽  
Vol 636 ◽  
pp. A118
Author(s):  
J. C. Mottram ◽  
H. Beuther ◽  
A. Ahmadi ◽  
P. D. Klaassen ◽  
M. T. Beltrán ◽  
...  

Context. High-mass star formation typically takes place in a crowded environment, with a higher likelihood of young forming stars affecting and being affected by their surroundings and neighbours, as well as links between different physical scales affecting the outcome. However, observational studies are often focused on either clump or disc scales exclusively. Aims. We explore the physical and chemical links between clump and disc scales in the high-mass star formation region W3 IRS4, a region that contains a number of different evolutionary phases in the high-mass star formation process, as a case-study for what can be achieved as part of the IRAM NOrthern Extended Millimeter Array (NOEMA) large programme named CORE: “Fragmentation and disc formation in high-mass star formation”. Methods. We present 1.4 mm continuum and molecular line observations with the IRAM NOEMA interferometer and 30 m telescope, which together probe spatial scales from ~0.3−20′′ (600−40 000 AU or 0.003−0.2 pc at 2 kpc, the distance to W3). As part of our analysis, we used XCLASS to constrain the temperature, column density, velocity, and line-width of the molecular emission lines. Results. The W3 IRS4 region includes a cold filament and cold cores, a massive young stellar object (MYSO) embedded in a hot core, and a more evolved ultra-compact (UC)H II region, with some degree of interaction between all components of the region that affects their evolution. A large velocity gradient is seen in the filament, suggesting infall of material towards the hot core at a rate of 10−3−10−4 M⊙ yr−1, while the swept up gas ring in the photodissociation region around the UCH II region may be squeezing the hot core from the other side. There are no clear indications of a disc around the MYSO down to the resolution of the observations (600 AU). A total of 21 molecules are detected, with the abundances and abundance ratios indicating that many molecules were formed in the ice mantles of dust grains at cooler temperatures, below the freeze-out temperature of CO (≲35 K). This contrasts with the current bulk temperature of ~50 K, which was obtained from H2CO. Conclusions. CORE observations allow us to comprehensively link the different structures in the W3 IRS4 region for the first time. Our results argue that the dynamics and environment around the MYSO W3 IRS4 have a significant impact on its evolution. This context would be missing if only high resolution or continuum observations were available.


Author(s):  
Yasuo Fukui ◽  
Asao Habe ◽  
Tsuyoshi Inoue ◽  
Rei Enokiya ◽  
Kengo Tachihara

Abstract Star formation is a fundamental process for galactic evolution. One issue over the last several decades has been determining whether star formation is induced by external triggers or self-regulated in a closed system. The role of an external trigger, which can effectively collect mass in a small volume, has attracted particular attention in connection with the formation of massive stellar clusters, which in extreme cases may lead to starbursts. Recent observations have revealed massive cluster formation triggered by cloud–cloud collisions in nearby interacting galaxies, including the Magellanic system and the Antennae Galaxies as well as almost all well-known high-mass star-forming regions in the Milky Way, such as RCW 120, M 20, M 42, NGC 6334, etc. Theoretical efforts are going into the foundation for the mass compression that causes massive cluster/star formation. Here, we review the recent progress on cloud–cloud collisions and the triggered star-cluster formation, and discuss future prospects for this area of study.


2005 ◽  
Vol 620 (2) ◽  
pp. 795-799 ◽  
Author(s):  
C. J. Lintott ◽  
S. Viti ◽  
J. M. C. Rawlings ◽  
D. A. Williams ◽  
T. W. Hartquist ◽  
...  
Keyword(s):  

Author(s):  
A J Rigby ◽  
N Peretto ◽  
R Adam ◽  
P Ade ◽  
M Anderson ◽  
...  

Abstract Determining the mechanism by which high-mass stars are formed is essential for our understanding of the energy budget and chemical evolution of galaxies. By using the New IRAM KIDs Array 2 (NIKA2) camera on the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we have conducted high-sensitivity and large-scale mapping of a fraction of the Galactic plane in order to search for signatures of the transition between the high- and low-mass star-forming modes. Here, we present the first results from the Galactic Star Formation with NIKA2 (GASTON) project, a Large Programme at the IRAM 30-m telescope which is mapping ≈2 deg2 of the inner Galactic plane (GP), centred on ℓ = 23${_{.}^{\circ}}$9, b = 0${_{.}^{\circ}}$05, as well as targets in Taurus and Ophiuchus in 1.15 and 2.00 mm continuum wavebands. In this paper we present the first of the GASTON GP data taken, and present initial science results. We conduct an extraction of structures from the 1.15 mm maps using a dendrogram analysis and, by comparison to the compact source catalogues from Herschel survey data, we identify a population of 321 previously-undetected clumps. Approximately 80 per cent of these new clumps are 70 μm-quiet, and may be considered as starless candidates. We find that this new population of clumps are less massive and cooler, on average, than clumps that have already been identified. Further, by classifying the full sample of clumps based upon their infrared-bright fraction – an indicator of evolutionary stage – we find evidence for clump mass growth, supporting models of clump-fed high-mass star formation.


2020 ◽  
Vol 500 (4) ◽  
pp. 4937-4957 ◽  
Author(s):  
G Martin ◽  
R A Jackson ◽  
S Kaviraj ◽  
H Choi ◽  
J E G Devriendt ◽  
...  

ABSTRACT Dwarf galaxies (M⋆ < 109 M⊙) are key drivers of mass assembly in high-mass galaxies, but relatively little is understood about the assembly of dwarf galaxies themselves. Using the NewHorizon cosmological simulation (∼40 pc spatial resolution), we investigate how mergers and fly-bys drive the mass assembly and structural evolution of around 1000 field and group dwarfs up to z = 0.5. We find that, while dwarf galaxies often exhibit disturbed morphologies (5 and 20 per cent are disturbed at z = 1 and z = 3 respectively), only a small proportion of the morphological disturbances seen in dwarf galaxies are driven by mergers at any redshift (for 109 M⊙, mergers drive under 20 per cent morphological disturbances). They are instead primarily the result of interactions that do not end in a merger (e.g. fly-bys). Given the large fraction of apparently morphologically disturbed dwarf galaxies which are not, in fact, merging, this finding is particularly important to future studies identifying dwarf mergers and post-mergers morphologically at intermediate and high redshifts. Dwarfs typically undergo one major and one minor merger between z = 5 and z = 0.5, accounting for 10 per cent of their total stellar mass. Mergers can also drive moderate star formation enhancements at lower redshifts (3 or 4 times at z = 1), but this accounts for only a few per cent of stellar mass in the dwarf regime given their infrequency. Non-merger interactions drive significantly smaller star formation enhancements (around two times), but their preponderance relative to mergers means they account for around 10 per cent of stellar mass formed in the dwarf regime.


2017 ◽  
Vol 849 (1) ◽  
pp. 25 ◽  
Author(s):  
Tie Liu ◽  
John Lacy ◽  
Pak Shing Li ◽  
Ke Wang ◽  
Sheng-Li Qin ◽  
...  
Keyword(s):  

2020 ◽  
Vol 644 ◽  
pp. A34
Author(s):  
G. Sabatini ◽  
S. Bovino ◽  
A. Giannetti ◽  
F. Wyrowski ◽  
M. A. Órdenes ◽  
...  

Context. Deuteration has been suggested to be a reliable chemical clock of star-forming regions due to its strong dependence on density and temperature changes during cloud contraction. In particular, the H3+ isotopologues (e.g. ortho-H2D+) seem to act as good proxies of the evolutionary stages of the star formation process. While this has been widely explored in low-mass star-forming regions, in the high-mass counterparts only a few studies have been pursued, and the reliability of deuteration as a chemical clock remains inconclusive. Aims. We present a large sample of o-H2D+ observations in high-mass star-forming regions and discuss possible empirical correlations with relevant physical quantities to assess its role as a chronometer of star-forming regions through different evolutionary stages. Methods. APEX observations of the ground-state transition of o-H2D+ were analysed in a large sample of high-mass clumps selected from the ATLASGAL survey at different evolutionary stages. Column densities and beam-averaged abundances of o-H2D+ with respect to H2, X(o-H2D+), were obtained by modelling the spectra under the assumption of local thermodynamic equilibrium. Results. We detect 16 sources in o-H2D+ and find clear correlations between X(o-H2D+) and the clump bolometric luminosity and the dust temperature, while only a mild correlation is found with the CO-depletion factor. In addition, we see a clear correlation with the luminosity-to-mass ratio, which is known to trace the evolution of the star formation process. This would indicate that the deuterated forms of H3+ are more abundant in the very early stages of the star formation process and that deuteration is influenced by the time evolution of the clumps. In this respect, our findings would suggest that the X(o-H2D+) abundance is mainly affected by the thermal changes rather than density changes in the gas. We have employed these findings together with observations of H13CO+, DCO+, and C17O to provide an estimate of the cosmic-ray ionisation rate in a sub-sample of eight clumps based on recent analytical work. Conclusions. Our study presents the largest sample of o-H2D+ in star-forming regions to date. The results confirm that the deuteration process is strongly affected by temperature and suggests that o-H2D+ can be considered a reliable chemical clock during the star formation processes, as proved by its strong temporal dependence.


Sign in / Sign up

Export Citation Format

Share Document