Chapter 4 The Stress Energy Tensor in Theory of General Relativity and the Stress Tensor in Elasticity Theory are Similar

2021 ◽  
pp. 65-70
2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Ming-Zhi Chung ◽  
Yu-tin Huang ◽  
Jung-Wook Kim

Abstract In this paper, we demonstrate that at leading order in post Minkowskian (PM) expansion, the stress-energy tensor of Kerr-Newman black hole can be recovered to all orders in spin from three sets of minimal coupling: the electric and gravitational minimal coupling for higher-spin particles, and the “minimal coupling” for massive spin-2 decay. These couplings are uniquely defined from kinematic consideration alone. This is shown by extracting the classical piece of the one-loop stress-energy tensor form factor, which we provide a basis that is valid to all orders in spin. The 1 PM stress tensor, and the metric in the harmonic gauge, is then recovered from the classical spin limit of the form factor.


Author(s):  
Roman Baudrimont

This paper is to summarize the involvement of the stress energy tensor in the study of fluid mechanics. In the first part we will see the implication that carries the stress energy tensor in the framework of general relativity. In the second part, we will study the stress energy tensor under the mechanics of perfect fluids, allowing us to lead third party in the case of Newtonian fluids, and in the last part we will see that it is possible to define space-time as a no-Newtonian fluids.


Author(s):  
Roman Baudrimont

This paper is to summarize the involvement of the stress energy tensor in the study of fluid mechanics. In the first part we will see the implication that carries the stress energy tensor in the framework of general relativity. In the second part, we will study the stress energy tensor under the mechanics of perfect fluids, allowing us to lead third party in the case of Newtonian fluids, and in the last part we will see that it is possible to define space-time as a no-Newtonian fluids.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
D. D. Pawar ◽  
V. R. Patil ◽  
S. N. Bayaskar

This paper deals with the cosmological models for the static spherically symmetric spacetime for perfect fluid with anisotropic stress energy tensor in general relativity by introducing the generating functions g(r) and w(r) and also discussing their physical and geometric properties.


2006 ◽  
Vol 15 (07) ◽  
pp. 959-989 ◽  
Author(s):  
M. LECLERC

We deal with the question, under which circumstances the canonical Noether stress-energy tensor is equivalent to the gravitational (Hilbert) tensor for general matter fields under the influence of gravity. In the framework of general relativity, the full equivalence is established for matter fields that do not couple to the metric derivatives. Spinor fields are included into our analysis by reformulating general relativity in terms of tetrad fields, and the case of Poincaré gauge theory, with an additional, independent Lorentz connection, is also investigated. Special attention is given to the flat limit, focusing on the expressions for the matter field energy (Hamiltonian). The Dirac–Maxwell system is investigated in detail, with special care given to the separation of free (kinetic) and interaction (or potential) energy. Moreover, the stress-energy tensor of the gravitational field itself is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document