scholarly journals Three-dimensional shear velocity structure of the Mauleon and Arzacq basins (Western Pyrenees)

Author(s):  
Maximilien Lehujeur ◽  
Sébastien Chevrot ◽  
Antonio Villaseñor ◽  
Emmanuel Masini ◽  
Nicolas Saspiturry ◽  
...  

We present a 3-D shear wave velocity model of the Mauleon and Arzacq basins from the surface down to 10~km depth. This model is obtained by inverting phase velocity maps for periods from 2 to 9~s measured on coherent surface wavefronts extracted from ambient seismic noise by matched filtering. This new model, which is found in good agreement with local earthquake tomography, reveals the architecture of the Mauleon and Arzacq basins which were poorly imaged by conventional reflection seismic data. Combining these new tomographic images with surface and subsurface geological information allows us to trace major orogenic structures from the basement to the surface. In the basin, the models are successfully imaging first-order folds and thrusts at kilometric scale. The velocity structure within the basement and its geometrical relationship with the base of inverted rift basins supports a progressive northward exhumation of deep crustal and mantle rocks in the hanging wall of north-vergent Pyrenean thrusts. Our tomographic models image in 3-D orogen-perpendicular structures responsible for crustal segmentation as the Saison and Barlanes transfer zones. We propose that these steep structures consist in tear faults that accommodate the deepening of the Mauleon basin basement from west to east. To the west, this basement made of former hyper-extended rift domains (including mantle rocks) is anomalously sampled within the hanging-wall of north-directed orogenic thrusts, explaining its shallow attitude and its best preservation in comparison to the eastern segment of the study area. Eastward, the vertical shift of the basement makes that the former Mauleon basin hyper-extended rift basement remained in a footwall situation in respect of orogenic thrust and was underthrust. The comparison of the tomographic models obtained with surface wave tomography and local earthquake tomography shows that each approach has its own advantages and shortcomings but also that they are very complementary in nature, which would suggest to combine them in joint inversions to further improve passive imaging of the shallow crust and sedimentary basins.

2020 ◽  
Author(s):  
Emanuel Kästle ◽  
Irene Molinari ◽  
Lapo Boschi ◽  
AlpArray Working Group

<p>We make use of the AlpArray Seismic Network to study the properties of the ambient-noise field and create a new 3D shear-velocity model of the Alpine crust. The latter will be used to improve our understanding of the tectonic processes that formed the Alps.</p><p>From two years of data, more than 150,000 station-station cross-correlations are extracted and used to evaluate strength and directivity of the noise field and its seasonal variations. Phase-velocity measurements for both Love and Rayleigh waves are obtained and the anisotropic phase-velocity structure is imaged. At mid-crustal levels, the strongest azimuthal anisotropy is found underneath the northern Italian Po plain and in the northern Dinarides, with strengths of 10-20% and a fast axis direction pointing NNE in Italy and NE in the Dinarides. In the western and central Alps we find an approximately NE direction and a strength of 5%; the eastern Alpine fast axis point toward the north with strengths of 2-5%.</p><p>We apply a probabilistic inversion to resolve the 3D shear-velocity structure of the crust. The homogeneous and dense station setup results in a shear-velocity model of unprecedented resolution for the uppermost 60 km of the crust underneath the entire orogen. By using data in the period range between 2 and 100s, we are able to better constrain shallow structures, such as the sedimentary basins, and to link surface-geological features to velocity variations observed at depth.</p>


1998 ◽  
Vol 41 (1) ◽  
Author(s):  
M. ou A. Bounif ◽  
C. Dorbath

Local earthquake travel-time data were inverted to obtain a three dimensional tomographic image of the region centered on the 1985 Constantine earthquake. The resulting velocity model was then used to relocate the events. The tomographic data set consisted of P and S waves travel-times from 653 carefully selected aftershocks of this moderate size earthquake, recorded at 10 temporary stations. A three-dimensional P-wave velocity image to a depth of 12 km was obtained by Thurber's method. At shallower depth, the velocity contrasts reflected the differences in tectonic units. Velocities lower than 4 km/s corresponded to recent deposits, velocities higher than 5 km/s to the Constantine Neritic and the Tellian nappes. The relocation of the aftershocks indicates that most of the seismicity occured where the velocity exceeded 5.5 km/s. The aftershock distribution accurately defined the three segments involved in the main shock and led to a better understanding of the rupture process.


2001 ◽  
Vol 106 (B9) ◽  
pp. 19367-19389 ◽  
Author(s):  
Anne Paul ◽  
Marco Cattaneo ◽  
François Thouvenot ◽  
Daniele Spallarossa ◽  
Nicole Béthoux ◽  
...  

2016 ◽  
Vol 58 (6) ◽  
Author(s):  
V. G. Krishna

<p>Vertical component record sections of local earthquake seismograms from a state-of-the-art Koyna-Warna digital seismograph network are assembled in the reduced time versus epicentral distance frame, similar to those obtained in seismic refraction profiling. The record sections obtained for an average source depth display the processed seismograms from nearly equal source depths with similar source mechanisms and recorded in a narrow azimuth range, illuminating the upper crustal P and S velocity structure in the region. Further, the seismogram characteristics of the local earthquake sources are found to vary significantly for different source mechanisms and the amplitude variations exceed those due to velocity model stratification. In the present study a large number of reflectivity synthetic seismograms are obtained in near offset ranges for a stratified upper crustal model having sharp discontinuities with 7%-10% velocity contrasts. The synthetics are obtained for different source regimes (e.g., strike-slip, normal, reverse) and different sets of source parameters (strike, dip, and rake) within each regime. Seismogram sections with dominantly strike-slip mechanism are found to be clearly favorable in revealing the velocity stratification for both P and S waves. In contrast the seismogram sections for earthquakes of other source mechanisms seem to display the upper crustal P phases poorly with low amplitudes even in presence of sharp discontinuities of high velocity contrasts. The observed seismogram sections illustrated here for the earthquake sources with strike-slip and normal mechanisms from the Koyna-Warna seismic region substantiate these findings. Travel times and reflectivity synthetic seismograms are used for 1-D modeling of the observed virtual source local earthquake seismogram sections and inferring the upper crustal velocity structure in the Koyna-Warna region. Significantly, the inferred upper crustal velocity model in the region reproduces the synthetic seismograms comparable to the observed sections for earthquake sources with differing mechanisms in the Koyna and Warna regions.</p>


2019 ◽  
Vol 110 (1) ◽  
pp. 26-37 ◽  
Author(s):  
Masumi Yamada ◽  
Thakur Kandel ◽  
Koji Tamaribuchi ◽  
Abhijit Ghosh

ABSTRACT In this article, we created a well-resolved aftershock catalog for the 2015 Gorkha earthquake in Nepal by processing 11 months of continuous data using an automatic onset and hypocenter determination procedure. Aftershocks were detected by the NAMASTE temporary seismic network that is densely distributed covering the rupture area and became fully operational about 50 days after the mainshock. The catalog was refined using a joint hypocenter determination technique and an optimal 1D velocity model with station correction factors determined simultaneously. We found around 15,000 aftershocks with the magnitude of completeness of ML 2. Our catalog shows that there are two large aftershock clusters along the north side of the Gorkha–Pokhara anticlinorium and smaller shallow aftershock clusters in the south. The patterns of aftershock distribution in the northern and southern clusters reflect the complex geometry of the Main Himalayan thrust. The aftershocks are located both on the slip surface and through the entire hanging wall. The 1D velocity structure obtained from this study is almost constant at a P-wave velocity (VP) of 6.0  km/s for a depth of 0–20 km, similar to VP of the shallow continental crust.


Sign in / Sign up

Export Citation Format

Share Document