Research into phase transformations in reservoir systems models in the presence of thermodynamic hydrate formation inhibitors of high concentration
Gas hydrates have been and still remain a difficult problem in the oil and gas industry, solution of which requires considerable efforts and resources. In this work, the mechanism of phase transformations at negative temperatures in the formation of the solid phase is preliminarily studied using the reservoir system models consisting of a gas mixture and a solution of gas hydrate formation inhibitor of thermodynamic action with high concentration in distilled water. A system of three-dimensional lighting and image magnification is used to visually detect phase boundaries by creating optical effects. Thus, in the system “inhibitor solution – gas hydrate – gas” in the process of gas hydrate recrystallization in the conditions close to equilibrium, microzones of supercooled water may occur, which in the absence of gas molecules access is crystallized into ice. The result of such solid phase structure formation is its increased stability in nonequilibrium conditions for a relatively long period of time.