Predictive Model for Conducting Electromagnetic Interference by Bidirectional Excitation Controller
Bidirectional excitation controller is used in the excitation system of brushed DC motor. There are many monitoring sensors and weak current switches nearby. Therefore, it is necessary to study the conduction interference of the excitation controller. Firstly, based on the working principle of bidirectional excitation controller, the propagation path model and corresponding equivalent circuit of bidirectional excitation controller are established. Then, the parasitic capacitance parameters between the switch tube and the heat sink were extracted by ANSYS Q3D software, and the dynamic model of IGBT was established by using ANSYS Simplorer software. Based on ANSYS software, the prediction model of the equipment conducted electromagnetic interference was obtained. Finally an excitation controller conducting interference test platform was built, and the predicted results were compared with the measured interference results of the experimental platform to verify the accuracy of the prediction model.