scholarly journals Modification of polyvinylchloride by the silicates on the base of rice husk

2021 ◽  
Vol 263 ◽  
pp. 01001
Author(s):  
Elena Gotlib ◽  
Dilyara Sadykova ◽  
Ekaterina Yamaleeva ◽  
Alla Sokolova

As a modifying additive in PVC-compositions, silicates produced by means of rice husk processing are of practical interest. Rice husk ash obtained by burning at 350°C, along with synthetic and naturally occurring wollastonite, significantly reduce plasticizer’s migration from the PVC-composition due to their porosity. This is due to the fact that the part of hydroxyl components of the plasticizer EDOS has adsorbed on the surface or retained by the silicates pores. Along with that, Miwoll 10-97 ensures a greater decrease in plasticizer’s migration than synthetic calcium silicate on the base of rice husk ash. When all the researched silicates are modified by the rice husk and naturally occurring wollastonite, heat stability of PVC-compositions grows. This is preconditioned by the alkaline origin of the surface of filling compounds that allows their possible reaction with chlorine hydride released from PVC during thermal decomposition. Synthetic and naturally occurring wollastonite enhance strain-strength properties of PVC-compositions whereas silicates on the case of rice husk reduce these parameters.

Author(s):  
RA.B. Depaa ◽  
V. Priyadarshini ◽  
A. Hemamalinie ◽  
J Francis Xavier ◽  
K Surendrababu

Author(s):  
Savita Chaudhary ◽  
Aditya Pratap Singh

The optimized RHA, by controlled burn or grinding, has been used as a pozzolanic material in cement and concrete. Using it provides several advantages, such as improved strength and durability properties, and environmental benefits related to the disposal of waste materials and to reduced carbon dioxide emissions. Up to now, little research has been done to investigate the use of RHA as supplementary material in cement and concrete production .The main objective of this work is to study the suitability of the rice husk ash as a pozzolanic material for cement replacement in concrete. However it is expected that the use of rice husk ash in concrete improve the strength properties of concrete. Also it is an attempt made to develop the concrete using rice husk ash as a source material for partial replacement of cement, which satisfies the


Author(s):  
K. O. Oriola

The evaluation of agro-industrial by-products as alternative construction materials is becoming more significant as the demand for environmentally friendly construction materials increases. In this study, the workability and compressive strength of concrete produced by combining Palm Kernel Shell (PKS) and Rice Husk Ash (RHA) was investigated. Concrete mixes using a fixed content of 15% RHA as replacement for cement and 20, 40, 60, 80 and 100% PKS as replacement for crushed granite by volume with the mix ratios of 1:1½:3, 1:2:4 and 1:3:6 were produced. The water-to-cement ratios of 0.5, 0.6 and 0.7 were used for the respective mix ratios. Concrete without PKS and RHA served as control mix. The fresh concrete workability was evaluated through slump test. The concrete hardened properties determined were the density and compressive strength. The results indicated that the workability and density of PKSC were lower than control concrete, and they decreased as the PKS content in each mix ratio was increased. The compressive strength of concrete at 90 days decreased from 27.8-13.1 N/mm2, 23.8-8.9 N/mm2and 20.6-7.6 for 1:1½:3, 1:2:4 and 1:3:6, respectively as the substitution level of PKS increased from 0-100%. However, the compressive strength of concrete increased with curing age and the gain in strength of concrete containing RHA and PKSC were higher than the control at the later age. The concrete containing 15% RHA with up to 40% PKS for 1:1½:3 and 20% PKS for 1:2:4 mix ratios satisfied the minimum strength requirements for structural lightweight aggregate concrete (SLWAC) stipulated by the relevant standards. It can be concluded that the addition of 15% RHA is effective in improving the strength properties of PKSC for eco-friendly SLWAC production..


Author(s):  
P J Ramadhansyah ◽  
K A Masri ◽  
S A Mangi ◽  
M I Mohd Yusak ◽  
M R Hainin ◽  
...  

Author(s):  
Aikot Pallikkara Shashikala ◽  
Praveen Nagarajan ◽  
Saranya Parathi

Production of Portland cement causes global warming due to the emission of greenhouse gases to the environment. The need for reducing the amount of cement is necessary from sustainability point of view. Alkali activated and geopolymeric binders are used as alternative to cement. Industrial by-products such as fly ash, ground granulated blast furnace slag (GGBS), silica fume, rice husk ash etc. are commonly used for the production of geopolymer concrete. This paper focuses on the development of geopolymer concrete from slag (100% GGBS). Effect of different cementitious materials such as lime, fly ash, metakaolin, rice husk ash, silica fume and dolomite on strength properties of slag (GGBS) based geopolymer concrete are also discussed. It is observed that the addition of dolomite (by-products from rock crushing plants) into slag based geopolymer concrete reduces the setting time, enhances durability and improves rapidly the early age strength of geopolymer concrete. Development of geopolymer concrete with industrial by-products is a solution to the disposal of the industrial wastes. The quick setting concrete thus produced can reduce the cost of construction making it sustainable also.


Soil stability is a significant criterion in the field of development, for soil which needs adequate steadiness, different adjustment strategies can be embraced. The entrenched methods of soil adjustment regularly utilize such establishing operators like cement. Substitution of solidifying substance with commercial or agriculture outcome is profoundly attractive. Rice husk ash is an extremely prospective agriculture dissipates as pozzolanic materials that bring about a prevalent property after joined with lime. Also, coconut fibre is well known for its durability and high resistance and gives well establishing results when combined with lime and rice husk ash. This study worked on the experimental investigation of clayey soil with admixtures like lime, rice husk ash and coconut fibre. This study included the calculation of properties of the soil as consistency limits and strength characteristics. Clay type of soil is used in this study. In view of compaction, expansion of lime, RHA and coconut fibre diminishes the dry density and expands the moisture content. From the perspective of strength characteristics and economical terms, expansion of 6% lime, 8 % RHA and 1 % coconut fibre are prescribed as ideal value for subgrade soil adjustment


2019 ◽  
Vol 11 (2) ◽  
pp. 45
Author(s):  
Sadang Husain ◽  
Ninis Hadi Haryanti ◽  
Suryajaya Suryajaya ◽  
Antung Permitaria

<p class="abstrak">Calcium silicate ceramics have been made using natural ingredients such as rice husk and snail shell with solid reaction techniques. The aim of this study to determine the characteristics of calcium silicate that have been sintered at a temperature of 900 <sup>°</sup>C, 1000 <sup>°</sup>C, and 1100 <sup>°</sup>C. Samples were characterized by X-Ray Diffraction (XRD), optical microscopy, and Fourier Transform Infra-Red (FTIR). The results of XRD characterization showed that CaSiO<sub>3</sub> (calcium silicate) along with the increase in calcination temperature and quantity was increased due to the increase of temperature of calcination. FTIR analysis showed that the Ca-Si-O bond was formed at wave number ranging from 848 cm<sup>-1</sup> and 999 – 1001 cm<sup>-1</sup>.</p>


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Yuyi Liu ◽  
Yunhe Su ◽  
Abdoullah Namdar ◽  
Guoqing Zhou ◽  
Yuexin She ◽  
...  

Geological disasters often occur due to expansion and shrinkage properties of expansive soil. This paper presents a cementitious material combined with rice husk ash (RHA) obtained from biomass power plants and lime to stabilize expansive soil. Based on compressive and flexural strength of RHA-lime mortars, blending ratio of RHA/lime was adopted as 4 : 1 by weight for soil stabilization. When mix proportion of RHA-lime mixture varied from 0% to 20%, specific surface area of stabilized expansive soil decreased dramatically and medium particle size increased. The deformation and strength properties of stabilized expansive soil were investigated through swelling test, consolidation test, unconfined compression test, direct shear test, and so on. With increase in RHA-lime content and curing time, deformation properties including swelling potential, swelling pressure, compression index, crack quantity, and fineness of expansive soil lowered remarkably; meanwhile, strength properties involving unconfined compressive strength, cohesion, and internal friction angle improved significantly. Considering engineering performance and cost, mix proportion of 15% and initial water content of 1.2 times optimum moisture content were recommended for stabilizing expansive soil. In addition, effectiveness of RHA-lime to stabilize expansive soil was achieved by replacement efficiency, coagulation reaction, and ion exchange.


Sign in / Sign up

Export Citation Format

Share Document