scholarly journals Flow Simulation in a combined Region

2021 ◽  
Vol 264 ◽  
pp. 01016
Author(s):  
Umurdin Dalabaev

The article deals with the flow in a complex area. The composition of this region consists of a porous medium through the pores of which the liquid moves and a zone without a porous framework (free zone). The flow is modeled using an interpenetrating heterogeneous model. In the one-dimensional case, an analytical solution is obtained. This solution is compared with the solution learned by the move node method. An analysis is made with experimental data with a Brinkman layer. A numerical solution of a two-dimensional problem is also obtained.

2001 ◽  
Author(s):  
Robert Vance ◽  
Indrek S. Wichman

Abstract A linear stability analysis is performed on two simplified models representing a one-dimensional flame between oxidizer and fuel reservoirs and a two-dimensional “edge-flame” between the same reservoirs but above a cold, inert wall. Comparison of the eigenvalue spectra for both models is performed to discern the validity of extending the results from the one-dimensional problem to the two-dimensional problem. Of primary interest is the influence on flame stability of thermal-diffusive imbalances, i.e. non-unity Lewis numbers. Flame oscillations are observed when Le > 1, and cellular flames are witnessed when Le < 1. It is found that when Le > 1 the characteristics of flame behavior are consistent between the two models. Furthermore, when Le < 1, the models are found to be in good agreement with respect to the magnitude of the critical wave numbers. Results from the coarse mesh analysis of the two-dimensional system are presented and compared to the one-dimensional eigenvalue spectra. Additionally, an examination of low reactant convection is undertaken. It is concluded that for low flow rates the behavior in one and two dimensions are similar qualitatively and quantitatively.


1967 ◽  
Vol 34 (3) ◽  
pp. 725-734 ◽  
Author(s):  
L. D. Bertholf

Numerical solutions of the exact equations for axisymmetric wave propagation are obtained with continuous and discontinuous loadings at the impact end of an elastic bar. The solution for a step change in stress agrees with experimental data near the end of the bar and exhibits a region that agrees with the one-dimensional strain approximation. The solution for an applied harmonic displacement closely approaches the Pochhammer-Chree solution at distances removed from the point of application. Reflections from free and rigid-lubricated ends are studied. The solutions after reflection are compared with the elementary one-dimensional stress approximation.


2016 ◽  
Vol 11 (1) ◽  
pp. 119-126 ◽  
Author(s):  
A.A. Aganin ◽  
N.A. Khismatullina

Numerical investigation of efficiency of UNO- and TVD-modifications of the Godunov method of the second order accuracy for computation of linear waves in an elastic body in comparison with the classical Godunov method is carried out. To this end, one-dimensional cylindrical Riemann problems are considered. It is shown that the both modifications are considerably more accurate in describing radially converging as well as diverging longitudinal and shear waves and contact discontinuities both in one- and two-dimensional problem statements. At that the UNO-modification is more preferable than the TVD-modification because exact implementation of the TVD property in the TVD-modification is reached at the expense of “cutting” solution extrema.


Author(s):  
Geoffrey Hellman ◽  
Stewart Shapiro

This chapter develops a Euclidean, two-dimensional, regions-based theory. As with the semi-Aristotelian account in Chapter 2, the goal here is to recover the now orthodox Dedekind–Cantor continuum on a point-free basis. The chapter derives the Archimedean property for a class of readily postulated orientations of certain special regions, what are called “generalized quadrilaterals” (intended as parallelograms), by which the entire space is covered. Then the chapter generalizes this to arbitrary orientations, and then establishes an isomorphism between the space and the usual point-based one. As in the one-dimensional case, this is done on the basis of axioms which contain no explicit “extremal clause”, and we have no axiom of induction other than ordinary numerical (mathematical) induction.


2002 ◽  
Vol 12 (03n04) ◽  
pp. 341-358
Author(s):  
KRISHNA M. KAVI ◽  
DINESH P. MEHTA

This paper presents two algorithms for mutual exclusion on optical bus architectures including the folded one-dimensional bus, the one-dimensional array with pipelined buses (1D APPB), and the two-dimensional array with pipelined buses (2D APPB). The first algorithm guarantees mutual exclusion, while the second guarantees both mutual exclusion and fairness. Both algorithms exploit the predictability of propagation delays in optical buses.


2007 ◽  
Vol 21 (02n03) ◽  
pp. 139-154 ◽  
Author(s):  
J. H. ASAD

A first-order differential equation of Green's function, at the origin G(0), for the one-dimensional lattice is derived by simple recurrence relation. Green's function at site (m) is then calculated in terms of G(0). A simple recurrence relation connecting the lattice Green's function at the site (m, n) and the first derivative of the lattice Green's function at the site (m ± 1, n) is presented for the two-dimensional lattice, a differential equation of second order in G(0, 0) is obtained. By making use of the latter recurrence relation, lattice Green's function at an arbitrary site is obtained in closed form. Finally, the phase shift and scattering cross-section are evaluated analytically and numerically for one- and two-impurities.


Author(s):  
Bharti bharti ◽  
Debabrata Deb

We use molecular dynamics simulations to investigate the ordering phenomena in two-dimensional (2D) liquid crystals over the one-dimensional periodic substrate (1DPS). We have used Gay-Berne (GB) potential to model the...


Author(s):  
Deoras Prabhudharwadkar ◽  
Chris Bailey ◽  
Martin Lopez de Bertodano ◽  
John R. Buchanan

This paper describes in detail the assessment of the CFD code CFX to predict adiabatic liquid-gas two-phase bubbly flow. This study has been divided into two parts. In the first exercise, the effect of Lift Force, Wall Force and the Turbulent Diffusion Force have been assessed using experimental data from the literature for air-water upward bubbly flows through a pipe. The data used here had a characteristic near wall void peaking which was largely influenced by the joint action of the three forces mentioned above. The simulations were performed with constant bubble diameter assuming no bubble interactions. This exercise resulted in selection of the most appropriate closure form and closure coefficients for the above mentioned forces for the range of flow conditions chosen. In the second exercise, the One-Group Interfacial Area Transport equation was introduced in the two-fluid model of CFX. The interfacial area density plays important role in the correct prediction of interfacial mass, momentum and energy transfer and is affected by bubble breakup and coalescence processes in adiabatic flows. The One-Group Interfacial Area Transport Equation (IATE) has been developed and implemented for one-dimensional models and validated using cross-sectional area averaged experimental data over the last decade by various researchers. The original one-dimensional model has been extended to multidimensional flow predictions in this study and the results are presented in this paper. The paper also discusses constraints posed by the commercial CFD code CFX and the solutions worked out to obtain the most accurate implementation of the model.


Sign in / Sign up

Export Citation Format

Share Document