scholarly journals The effect of dihydroquercetin on the stability of consumer properties of chopped semi-finished meat

2021 ◽  
Vol 285 ◽  
pp. 05011
Author(s):  
N. N. Shagaeva ◽  
S. V. Kolobov ◽  
I. A. Zachesova

The steadily increasing demand for semi-finished meat products is provided by the constantly expanding product range and improving its quality. In turn, quality stability is an important criterion for increasing sales. The article presents data on the effect of a natural antioxidant-dihydroquercetin on the stability of consumer properties of chopped semi-finished moose meat with the addition of beet fiber when stored at a negative temperature for 216 days. Dihydroquercetin was added in an amount of 0.05% by weight of the raw material. In the course of the work, generally accepted methods of studying organoleptic and microbiological quality indicators were used. The degree of oxidative deterioration of the product was checked by determining the acid, peroxide and thiobarbituric numbers. The conducted studies allowed us to conclude that the use of this food additive allows us to preserve the organoleptic and microbiological properties of the semi-finished product for a longer period by inhibiting the formation of oxidation products. The use of dihydroquercetin contributed to a decrease in the experimental sample of the semi-finished product on day 216 of the peroxide and acid number by 2 times, and the thiobarbituric number by 1.8 times in relation to the control. Thus, by reducing the oxidative damage of the semi-finished product, it is possible to influence its characteristics during storage.

Vestnik MGTU ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 396-407
Author(s):  
L. I. Voitsekhovskaya ◽  
Ye. V. Franko ◽  
S. B. Verbytskyi ◽  
Yu. I. Okhrimenko

Mechanically deboned poultry meat is a valuable protein containing raw material widely used for the production of meat products. However, it does not have a high resistance to oxidation; therefore, various antioxidants including those of natural origin are used in its composition. The article provides information on the advisability of using rosemary extract and dihydroquercetin to stabilize lipids and interrupt hydrolytic and chain oxidative processes in mechanically deboned poultry meat. The permissible storage time for mechanically deboned poultry meat using the rosemary extract and dihydroquercetin in a chilled state is 96 hours. Research has been carried out on the oxidative processes of the fatty complex of mechanically deboned poultry meat during the refrigerated storage period. Antioxidants prevent the accumulation of peroxides: in the samples with their use, the peroxide number reaches critical values on 6-7 day of storage, without their use - on 3 day of storage. For all samples, a gradual increase in the acid number has been observed; however, for samples without antioxidants its values reach a critical level on the 4 day of storage, with the use of antioxidants - on the 7 day. The active formation of secondary oxidation products has begun from the second day of storage and reached the limit of permissible values in samples without antioxidants after 3 days of storage. In samples with antioxidants, the thiobarbituric number reaches a critical value on the 6 day. It has also been shown that the use of antioxidants contributes to the preservation of sensorial indicators (colour, odour) improving the quality of products. The efficiency of using the rosemary extract and dihydroquercetin as inhibitors of the oxidation of mechanically deboned poultry meat has been confirmed.


2018 ◽  
Vol 69 (9) ◽  
pp. 2366-2371
Author(s):  
Andrei Cucos ◽  
Petru Budrugeac ◽  
Iosif Lingvay ◽  
Adriana Mariana Bors ◽  
Andreea Voina

Thermal TG/DTG/DTA analysis coupled with FTIR spectroscopy was applied to some sorts of mineral and vegetable oils used in electrical equipment. On heating in inert atmosphere, it was observed that the mineral oils vaporize, while the vegetable oils undergo hydrolysis, yielding fatty acids as main volatiles, as indicated by FTIR. In synthetic air, the FTIR spectra of gaseous products confirm the presence of similar oxidation products, both for mineral and vegetable oils. The TG results indicated that the vegetable-based oils exhibit a substantially higher thermal stability than the mineral oils. The presence or absence of anti-oxidant inhibitors in these oils greatly influences the onset of the oxidation process in air environment factor, as results from the DTA results.


The quality, safety, and suitability of animal fat for processing of a specific meat product is a critical issue. Increasing the human awareness about the health aspects associated with increased intake of animal fat, makes camel fat a suitable raw material for meat processing due to its excellent nutritional contribution. Therefore, the target of this study is examination of the sensory, physicochemical, fat oxidation, fatty acid profile, and other quality parameters of camel fat to evaluate the feasibility for processing of different meat products. To achieve this goal, 30 fat samples each from the hump, renal, and mesentery of Arabian male camels were investigated. The results showed that both the renal and mesenteric fat had honey color and medium-soft texture, while the hump had greyish-white color and hard texture. The sensory panel scores were significantly different between the hump and other fats. Hump fat had significantly (P<0.05) higher moisture, protein, and collagen content, while higher fat content was recorded in mesenteric fat. The fatty acid analysis showed that hump had high SFA and very low PUFA in comparison with both renal and mesenteric fat. Camel fat had high oxidation stability, and the mean values were very low in comparison with the levels of quality and acceptability. The ultrastructural analysis showed that hump fat had high elastin fibers which increase its hardness. The results indicated that both renal and mesenteric fat were more suitable for the production of various meat products than the hump.


Vsyo o myase ◽  
2020 ◽  
pp. 22-24
Author(s):  
Nasonova V.V. ◽  
◽  
Tunieva E.K. ◽  
Motovilina A.A. ◽  
Mileenkova E.V. ◽  
...  

The paper presents the results of the study on the effect of low-temperature heat treatment on color characteristics and protein oxidation products depending on the method, temperature and duration of heat treatment of culinary products from turkey meat. At present, the use of low-temperature processing in the production technology for meat products with improved organoleptic indices is a topical direction.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2012
Author(s):  
Samantha Jo Grimes ◽  
Filippo Capezzone ◽  
Peteh Mehdi Nkebiwe ◽  
Simone Graeff-Hönninger

Rising consumer attraction towards superfoods and the steadily increasing demand for healthy, environmentally sustainable, and regionally produced food products has sharpened the demand for chia. Over the course of 4 years, two early flowering chia varieties belonging to Salvia hispanica L., and Salvia columbariae Benth. Species were identified to complete their phenological development and, therefore, able to reach maturity under a photoperiod >12 h, thus enabling the cultivation of chia in central Europe—more specifically, in southwestern Germany—consistently for the first time. Results obtained by the conducted field trial in 2018 showed that chia seed yields and thousand-seed mass ranged from 284.13 to 643.99 kg ha−1 and 0.92 to 1.36 g, respectively. Further, the statistical analyses showed that the protein content of the cultivated chia varieties ranged from 22.14 to 27.78%, the mucilage content varied from 10.35 to 20.66%, and the crude oil content amounted up to 28.00 and 31.73%. Fatty acid profiles were similar to previously reported data with α-Linolenic acid being the most prominent one, ranging from 60.40 to 65.87%, and we obtained ω6:ω3 ratios between 0.2 and 0.3. In conclusion, chia could represent a promising raw material from a nutritional point of view, while being able to diversify the local food basis of southwestern Germany.


2019 ◽  
Vol 268 ◽  
pp. 06002 ◽  
Author(s):  
Kensuke Seno ◽  
Ilhwan Park ◽  
Carlito Tabelin ◽  
Kagehiro Magaribuchi ◽  
Mayumi Ito ◽  
...  

Arsenopyrite (FeAsS) is the most common primary arsenic-sulfide mineral in nature, and its oxidation causes the release of toxic arsenic (As). To mitigate these problems, carrier-microencapsulation (CME), a technique that passivates sulfide minerals by covering their surfaces with a protective coating, has been developed. In the previous study of authors on CME, Al-catecholate complex significantly suppressed arsenopyrite oxidation via electron donating effects of the complex and the formation of an Al-oxyhydroxide coating. For the application of this technique to real tailings, however, further study should be carried out to elucidate long-term effectiveness of the coating to suppress arsenopyrite oxidation. This study investigates the stability of the coating formed on arsenopyrite by Al-based CME using weathering tests. The Al-oxyhydroxide coating suppressed arsenopyrite oxidation until about 50 days of the experiment, but after this, the amounts of oxidation products like dissolved S and As increased due to the gradual dissolution of the coating with time as a result of the low pH of leachate. This suggests that co-disposal of Al-based CME-treated arsenopyrite with minerals that have appropriate neutralization potentials, so that the pH is maintained at around 5 to 8 where Al-oxyhydroxide is stable.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yu Zheng ◽  
Xudong Luo ◽  
Jinlong Yang ◽  
Wenlong Huo ◽  
Chi Kang

A novel approach is used for fabricating steel slag foam ceramics based on the particle-stabilized foaming method. In this work, steel slag was used as the raw material and propyl gallate (PG) was used as the surface modifier. For the first time, steel slag ceramic foams were successfully fabricated based on particle-stabilized foams. The results show that the stability of the ceramic foams was closely related to the pH value and PG concentration. The porosity and compressive strength could be controlled by changing the solid loading of steel slag and sintering temperature. The porosity of steel slag foam ceramics ranged from 85.6% to 62.53%, and the compressive strength was from 1.74 MPa to 10.42 MPa. The thermal conductivity of steel slag foam ceramics was only 0.067 W (m·K)−1, which shows that it could be used as a thermal insulation material.


2012 ◽  
Vol 454 ◽  
pp. 324-328
Author(s):  
Yan He ◽  
Ya Jing Liu ◽  
Yong Lin Cao ◽  
Li Xia Zhou

Infra-red absorption spectrometry, X-ray diffraction observations and characterization tests based on silicon molybdenum colorimetric method were used to investigate the optimal pH value controlling the stability of the silicic acid form. The experiment process was done by using sodium silicate as raw material. The results showed that the solution of silicate influenced the polymerization. The active silicic acid solution with a certain degree of polymerization was obtained by controlling the pH values.


2002 ◽  
Vol 22 (3-4) ◽  
pp. 725-732 ◽  
Author(s):  
K. Karłowski ◽  
B. Windyga ◽  
M. Fonberg-Broczek ◽  
H. Ścieżyńska ◽  
A. Grochowska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document