AbstractLaser ablation-inductively coupled plasma-mass spectrometry and electron-probe microanalysis were used to investigate the trace-element contents of sphalerite, chalcopyrite and pyrite from the Plaka Pb–Zn–Ag deposit. Using petrographic observations, the analytical results could be linked to the temporal evolution of the Plaka ore-forming system. Sphalerite chemistry reliably records the temperature and fS2 evolution of the system, with estimated formation temperatures reproducing the microthermometric results from previous fluid-inclusion studies. Chalcopyrite chemistry also shows systematic variations over time, particularly for Cd, Co, Ge, In, Sn and Zn concentrations. Measurable pyrite was only found in association with early high-temperature mineralisation, and no clear trends could therefore be identified. We note, however, that As and Se contents in pyrite are consistent with formation temperatures estimated from co-existing sphalerite. Statistical analysis of the sphalerite data allowed us to identify the dominant geological controls on its trace-element content. The three investigated factors temperature, fS2, and sample location account for > 80% of the observed variance in Mn, Fe, Co, Ga, Ge, In, Sb and Hg concentrations, and > 60% of the observed variance in Cd and Sn concentrations. Only for Cu and Ag concentrations is the explained variance < 50%. A similarly detailed analysis was not possible for chalcopyrite and pyrite. Nevertheless, comparison of the results for all three investigated minerals indicates that there are some systematic variations across the deposit which may be explained by local differences in fluid composition.