scholarly journals Real-Time Pollution Analysis and Location Based on Vehicle Particle Radar

2020 ◽  
Vol 237 ◽  
pp. 03025
Author(s):  
Jing Gao ◽  
Xu Wang ◽  
Yuefeng Zhao ◽  
Junyong Zhao

This paper first studies the advantages and main observation methods of atmospheric particulate matter lidar in Regional large-scale measurement, and then discusses the measurement principle of lidar and two commonly used methods for inversion of aerosol extinction coefficient.Finally, the mobile observation system consisting of lidar-assisted vehicle particle monitor is used. Anping County is used as the research area.The lidar data of Anping County on September 15 to September 20, 2017 are obtained by means of the combination of navigation and fixed vertical monitoring.The results of fixed detection showes that foreign pollutants begin to be imported around 10 pm on the 15th, and the superimposed pollutants peakes around 2 pm on the 16th.The concentration of particulate matter gradually decreased after 2 pm on the 16th, which is in line with the trend of air quality rising first and then falling in accordance with the trend of the Ministry of Environmental Protection.According to the particle trajectory tracking map of the navigation area, the contaminant transport was analyzed Combined with the meteorological conditions at that time.

2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Katalin Hubai ◽  
Nora Kováts ◽  
Gábor Teke

AbstractAtmospheric particulate matter (PM) is one of the major environmental concerns in Europe. A wide range of studies has proved the ecotoxic potential of atmospheric particles. PM exerts chemical stress on vegetation by its potentially toxic constituents; however, relatively few studies are available on assessing phytotoxic effects under laboratory conditions. In our study, aqueous extract of particulate matter was prepared and used for treatment. Experiment was following the procedure defined by the No. 227 OECD Guideline for the Testing of Chemicals: Terrestrial Plant Test. Tomato (Lycopersicon esculentum Mill.) plants were used; elucidated toxicity was assessed based on morphological and biochemical endpoints such as biomass, chlorophyll-a and chlorophyll-b, carotenoids, and protein content. Biomass reduction and protein content showed a clear dose–effect relationship; the biomass decreased in comparison with the control (100%) in all test groups (TG) at a steady rate (TG1: 87.73%; TG2: 71.77%; TG3: 67.01%; TG4: 63.63%). The tendency in protein concentrations compared to the control was TG1: 113.61%; TG2: 148.21% TG3: 160.52%; TG4: 157.31%. However, pigments showed a ‘Janus-faced’ effect: nutrient content of the sample caused slight increase at lower doses; actual toxicity became apparent only at higher doses (chlorophyll-a concentration decrease was 84.47% in TG4, chlorophyll-b was 77.17%, and finally, carotene showed 83.60% decrease in TG4).


Author(s):  
Lu Yang ◽  
Hao Zhang ◽  
Xuan Zhang ◽  
Wanli Xing ◽  
Yan Wang ◽  
...  

Particulate matter (PM) is a major factor contributing to air quality deterioration that enters the atmosphere as a consequence of various natural and anthropogenic activities. In PM, polycyclic aromatic hydrocarbons (PAHs) represent a class of organic chemicals with at least two aromatic rings that are mainly directly emitted via the incomplete combustion of various organic materials. Numerous toxicological and epidemiological studies have proven adverse links between exposure to particulate matter-bound (PM-bound) PAHs and human health due to their carcinogenicity and mutagenicity. Among human exposure routes, inhalation is the main pathway regarding PM-bound PAHs in the atmosphere. Moreover, the concentrations of PM-bound PAHs differ among people, microenvironments and areas. Hence, understanding the behaviour of PM-bound PAHs in the atmosphere is crucial. However, because current techniques hardly monitor PAHs in real-time, timely feedback on PAHs including the characteristics of their concentration and composition, is not obtained via real-time analysis methods. Therefore, in this review, we summarize personal exposure, and indoor and outdoor PM-bound PAH concentrations for different participants, spaces, and cities worldwide in recent years. The main aims are to clarify the characteristics of PM-bound PAHs under different exposure conditions, in addition to the health effects and assessment methods of PAHs.


Author(s):  
Zhiyuan Wang ◽  
Xiaoyi Shi ◽  
Chunhua Pan ◽  
Sisi Wang

Exploring the relationship between environmental air quality (EAQ) and climatic conditions on a large scale can help better understand the main distribution characteristics and the mechanisms of EAQ in China, which is significant for the implementation of policies of joint prevention and control of regional air pollution. In this study, we used the concentrations of six conventional air pollutants, i.e., carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone (O3), derived from about 1300 monitoring sites in eastern China (EC) from January 2015 to December 2018. Exploiting the grading concentration limit (GB3095-2012) of various pollutants in China, we also calculated the monthly average air quality index (AQI) in EC. The results show that, generally, the EAQ has improved in all seasons in EC from 2015 to 2018. In particular, the concentrations of conventional air pollutants, such as CO, SO2, and NO2, have been decreasing year by year. However, the concentrations of particulate matter, such as PM2.5 and PM10, have changed little, and the O3 concentration increased from 2015 to 2018. Empirical mode decomposition (EOF) was used to analyze the major patterns of AQI in EC. The first mode (EOF1) was characterized by a uniform structure in AQI over EC. These phenomena are due to the precipitation variability associated with the East Asian summer monsoon (EASM), referred to as the “summer–winter” pattern. The second EOF mode (EOF2) showed that the AQI over EC is a north–south dipole pattern, which is bound by the Qinling Mountains and Huaihe River (about 35° N). The EOF2 is mainly caused by seasonal variations of the mixed concentration of PM2.5 and O3. Associated with EOF2, the Mongolia–Siberian High influences the AQI variation over northern EC by dominating the low-level winds (10 m and 850 hPa) in autumn and winter, and precipitation affects the AQI variation over southern EC in spring and summer.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 190
Author(s):  
William Hicks ◽  
Sean Beevers ◽  
Anja H. Tremper ◽  
Gregor Stewart ◽  
Max Priestman ◽  
...  

This research quantifies current sources of non-exhaust particulate matter traffic emissions in London using simultaneous, highly time-resolved, atmospheric particulate matter mass and chemical composition measurements. The measurement campaign ran at Marylebone Road (roadside) and Honor Oak Park (background) urban monitoring sites over a 12-month period between 1 September 2019 and 31 August 2020. The measurement data were used to determine the traffic increment (roadside–background) and covered a range of meteorological conditions, seasons, and driving styles, as well as the influence of the COVID-19 “lockdown” on non-exhaust concentrations. Non-exhaust particulate matter (PM)10 concentrations were calculated using chemical tracer scaling factors for brake wear (barium), tyre wear (zinc), and resuspension (silicon) and as average vehicle fleet non-exhaust emission factors, using a CO2 “dilution approach”. The effect of lockdown, which saw a 32% reduction in traffic volume and a 15% increase in average speed on Marylebone Road, resulted in lower PM10 and PM2.5 traffic increments and brake wear concentrations but similar tyre and resuspension concentrations, confirming that factors that determine non-exhaust emissions are complex. Brake wear was found to be the highest average non-exhaust emission source. In addition, results indicate that non-exhaust emission factors were dependent upon speed and road surface wetness conditions. Further statistical analysis incorporating a wider variability in vehicle mix, speeds, and meteorological conditions, as well as advanced source apportionment of the PM measurement data, were undertaken to enhance our understanding of these important vehicle sources.


Sign in / Sign up

Export Citation Format

Share Document