scholarly journals An APG-MUSIC Algorithm Based-on Optimized Sampling Array

2018 ◽  
Vol 208 ◽  
pp. 01004
Author(s):  
Mengxia Li ◽  
Wen Hu ◽  
Jiaying Di ◽  
Hongtao Li

This paper proposes a novel two-dimensional direction of arrival (2D-DOA) estimation with optimized sparse sampling array, which is combined with Accelerated Proximal Gradient singular value thresholding(APG) and Multiple Signal Classification(MUSIC). Firstly, a signal model of 2D-DOA estimation in sparse array is established, which is proved to satisfy low rank feature and NULL Space Property(NSP). Then, Genetic algorithm (GA) is applied to a sparse sampling array to optimize the performance of matrix completion(MC). Finally, MUSIC combined with APG is studied to recover received signal matrix and estimate the direction of arrival. The results of computer simulation demonstrate that compared with conventional 2D-DOA algorithms, the proposed algorithm reduces the number of array elements needed dramatically and effectively lowers the average sidelobes level of spatial spectrum.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dongming Wu ◽  
Fangzheng Liu ◽  
Zhihui Li ◽  
Zhenzhong Han

In this paper, we investigate the issue of direction-of-arrival (DOA) estimation of multiple signals in coprime arrays. An algorithm based on multiple signal classification (MUSIC) and forward and backward spatial smoothing (FBSS) is used for DOA estimation of this signal caused by multipath and interference. The large distance between adjacent elements of each subarray in the coprime arrays will bring phase ambiguity issues. According to the feature of the coprime number, the ambiguity problem can be eliminated. The correct DOA estimation can be obtained by searching for the common peak of the spatial spectrum and finding the overlapping peaks in the MUSIC spectrum of the two subarrays. For the rank deficit problem caused by the coherent signal, the FBSS algorithm is used for signal preprocessing before the MUSIC algorithm. Theoretical analysis and simulation results show that the algorithm can effectively solve the rank deficiency and phase ambiguity problems caused by coherent signals and sparse arrays in the coprime arrays.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Wenhao Zeng ◽  
Hongtao Li ◽  
Xiaohua Zhu ◽  
Chaoyu Wang

To improve the performance of two-dimensional direction-of-arrival (2D DOA) estimation in sparse array, this paper presents a Fixed Point Continuation Polynomial Roots (FPC-ROOT) algorithm. Firstly, a signal model for DOA estimation is established based on matrix completion and it can be proved that the proposed model meets Null Space Property (NSP). Secondly, left and right singular vectors of received signals matrix are achieved using the matrix completion algorithm. Finally, 2D DOA estimation can be acquired through solving the polynomial roots. The proposed algorithm can achieve high accuracy of 2D DOA estimation in sparse array, without solving autocorrelation matrix of received signals and scanning of two-dimensional spectral peak. Besides, it decreases the number of antennas and lowers computational complexity and meanwhile avoids the angle ambiguity problem. Computer simulations demonstrate that the proposed FPC-ROOT algorithm can obtain the 2D DOA estimation precisely in sparse array.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Feng-Gang Yan ◽  
Jun Wang ◽  
Shuai Liu ◽  
Yi Shen ◽  
Ming Jin

A low-complexity algorithm is presented to dramatically reduce the complexity of the multiple signal classification (MUSIC) algorithm for direction of arrival (DOA) estimation, in which both tasks of eigenvalue decomposition (EVD) and spectral search are implemented with efficient real-valued computations, leading to about 75% complexity reduction as compared to the standard MUSIC. Furthermore, the proposed technique has no dependence on array configurations and is hence suitable for arbitrary array geometries, which shows a significant implementation advantage over most state-of-the-art unitary estimators including unitary MUSIC (U-MUSIC). Numerical simulations over a wide range of scenarios are conducted to show the performance of the new technique, which demonstrates that with a significantly reduced computational complexity, the new approach is able to provide a close accuracy to the standard MUSIC.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Fangqing Wen ◽  
Gong Zhang

A low complexity monostatic cross multiple-in multiple-out (MIMO) radar scheme is proposed in this paper. The minimum-redundancy linear array (MRLA) is introduced in the cross radar to improve the efficiency of the array elements. The two-dimensional direction-of-arrival (DOA) estimation problem links to the trilinear model, which automatically pairs the estimated two-dimensional angles, requiring neither eigenvalue decomposition of received signal covariance matrix nor spectral peak searching. The proposed scheme performs better than the uniform linear arrays (ULA) configuration under the same conditions, and the proposed algorithm has less computational complexity than that of multiple signal classification (MUSIC) algorithm. Simulation results show the effectiveness of our scheme.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 136
Author(s):  
Pan Gong ◽  
Xixin Chen

In this paper, we investigate the problem of direction-of-arrival (DOA) estimation for massive multi-input multi-output (MIMO) radar, and propose a total array-based multiple signals classification (TA-MUSIC) algorithm for two-dimensional direction-of-arrival (DOA) estimation with a coprime cubic array (CCA). Unlike the conventional multiple signal classification (MUSIC) algorithm, the TA-MUSIC algorithm employs not only the auto-covariance matrix but also the mutual covariance matrix by stacking the received signals of two sub cubic arrays so that full degrees of freedom (DOFs) can be utilized. We verified that the phase ambiguity problem can be eliminated by employing the coprime property. Moreover, to achieve lower complexity, we explored the estimation of signal parameters via the rotational invariance technique (ESPRIT)-based multiple signal classification (E-MUSIC) algorithm, which uses a successive scheme to be computationally efficient. The Cramer–Rao bound (CRB) was taken as a theoretical benchmark for the lower boundary of the unbiased estimate. Finally, numerical simulations were conducted in order to demonstrate the effectiveness and superiority of the proposed algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qinyu Zhu ◽  
Guimei Zheng ◽  
Chen Chen ◽  
Qian Guo

The mutual coupling among various components of the collocated crossdipole (CCD) vector-sensor is severe, and its application is greatly limited. The spatial spread dipole (SSD) vector-sensor can avoid this problem, but the multiple signal classification (MUSIC) algorithm for the SSD array is rarely developed. In view of this situation, this paper proposed a MUSIC-like algorithm for the SSD array. The biquaternion model was first established, and the biquaternion MUSIC (BQ-MUSIC) algorithm was developed on the basis of this model, for the two-dimensional direction-of-arrival (2D-DOA) estimation. Our proposed algorithm requires low computational complexity by adopting the dimensionality reduction method. Numerical simulations verify the effectiveness of the proposed algorithm.


2014 ◽  
Vol 1049-1050 ◽  
pp. 1788-1791
Author(s):  
Xiao Feng Qiu ◽  
Xiao Fei Zhang

This paper presents the model of satellite planar array, and interference localization via direction of arrival (DOA) estimation. We derive a dimension reduction DOA estimaton algorithm therein. The proposed algorithm, which only requires a one-dimensional local searching, can avoid the high computational cost within two-dimensional multiple signal classification (2D-MUSIC) algorithm. We illustrate that the proposed algorithm has better angle estimation performance than estimation method of signal parameters via rotational invariance technique (ESPRIT) algorithm, and has very close angle estimation performance to 2D-MUSIC algorithm. Furthermore, our algorithm requires no extra pairing. Simulation results present the usefulness of our algorithm.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4403
Author(s):  
Ji Woong Paik ◽  
Joon-Ho Lee ◽  
Wooyoung Hong

An enhanced smoothed l0-norm algorithm for the passive phased array system, which uses the covariance matrix of the received signal, is proposed in this paper. The SL0 (smoothed l0-norm) algorithm is a fast compressive-sensing-based DOA (direction-of-arrival) estimation algorithm that uses a single snapshot from the received signal. In the conventional SL0 algorithm, there are limitations in the resolution and the DOA estimation performance, since a single sample is used. If multiple snapshots are used, the conventional SL0 algorithm can improve performance in terms of the DOA estimation. In this paper, a covariance-fitting-based SL0 algorithm is proposed to further reduce the number of optimization variables when using multiple snapshots of the received signal. A cost function and a new null-space projection term of the sparse recovery for the proposed scheme are presented. In order to verify the performance of the proposed algorithm, we present the simulation results and the experimental results based on the measured data.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Feng-Gang Yan ◽  
Shuai Liu ◽  
Jun Wang ◽  
Ming Jin

Most popular techniques for super-resolution direction of arrival (DOA) estimation rely on an eigen-decomposition (EVD) or a singular value decomposition (SVD) computation to determine the signal/noise subspace, which is computationally expensive for real-time applications. A two-step root multiple signal classification (TS-root-MUSIC) algorithm is proposed to avoid the complex EVD/SVD computation using a uniform linear array (ULA) based on a mild assumption that the number of signals is less than half that of sensors. The ULA is divided into two subarrays, and three noise-free cross-correlation matrices are constructed using data collected by the two subarrays. A low-complexity linear operation is derived to obtain a rough noise subspace for a first-step DOA estimate. The performance is further enhanced in the second step by using the first-step result to renew the previous estimated noise subspace with a slightly increased complexity. The new technique can provide close root mean square error (RMSE) performance to root-MUSIC with reduced computational burden, which are verified by numerical simulations.


Author(s):  
Eddy Taillefer ◽  
Jun Cheng ◽  
Takashi Ohira

This chapter presents direction of arrival (DoA) estimation with a compact array antenna using methods based on reactance switching. The compact array is the single-port electronically steerable parasitic array radiator (Espar) antenna. The antenna beam pattern is controlled though parasitic elements loaded with reactances. DoA estimation using an Espar antenna is proposed with the power pattern cross correlation (PPCC), reactance-domain (RD) multiple signal classification (MUSIC), and, RD estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithms. The three methods exploit the reactance diversity provided by an Espar antenna to correlate different antenna output signals measured at different times and for different reactance values. The authors hope that this chapter allows the researchers to appreciate the issues that may be encountered in the implementation of direction-finding application with a single-port compact array like the Espar antenna.


Sign in / Sign up

Export Citation Format

Share Document