scholarly journals A FPC-ROOT Algorithm for 2D-DOA Estimation in Sparse Array

2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Wenhao Zeng ◽  
Hongtao Li ◽  
Xiaohua Zhu ◽  
Chaoyu Wang

To improve the performance of two-dimensional direction-of-arrival (2D DOA) estimation in sparse array, this paper presents a Fixed Point Continuation Polynomial Roots (FPC-ROOT) algorithm. Firstly, a signal model for DOA estimation is established based on matrix completion and it can be proved that the proposed model meets Null Space Property (NSP). Secondly, left and right singular vectors of received signals matrix are achieved using the matrix completion algorithm. Finally, 2D DOA estimation can be acquired through solving the polynomial roots. The proposed algorithm can achieve high accuracy of 2D DOA estimation in sparse array, without solving autocorrelation matrix of received signals and scanning of two-dimensional spectral peak. Besides, it decreases the number of antennas and lowers computational complexity and meanwhile avoids the angle ambiguity problem. Computer simulations demonstrate that the proposed FPC-ROOT algorithm can obtain the 2D DOA estimation precisely in sparse array.

2018 ◽  
Vol 208 ◽  
pp. 01004
Author(s):  
Mengxia Li ◽  
Wen Hu ◽  
Jiaying Di ◽  
Hongtao Li

This paper proposes a novel two-dimensional direction of arrival (2D-DOA) estimation with optimized sparse sampling array, which is combined with Accelerated Proximal Gradient singular value thresholding(APG) and Multiple Signal Classification(MUSIC). Firstly, a signal model of 2D-DOA estimation in sparse array is established, which is proved to satisfy low rank feature and NULL Space Property(NSP). Then, Genetic algorithm (GA) is applied to a sparse sampling array to optimize the performance of matrix completion(MC). Finally, MUSIC combined with APG is studied to recover received signal matrix and estimate the direction of arrival. The results of computer simulation demonstrate that compared with conventional 2D-DOA algorithms, the proposed algorithm reduces the number of array elements needed dramatically and effectively lowers the average sidelobes level of spatial spectrum.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Sheng Liu ◽  
Jing Zhao ◽  
Yu Zhang

In this paper, an improved propagator method (PM) is proposed by using a two-parallel array consisting of two uniform large-spacing linear arrays. Because of the increase of element spacing, the mutual coupling between two sensors can be reduced. Firstly, two matrices containing elevation angle information are obtained by PM. Then, by performing EVD of the product of the two matrices, the elevation angles of incident signals can be estimated without direction ambiguity. At last, the matrix product is used again to obtain the estimations of azimuth angles. Compared with the existed PM algorithms based on conventional uniform two-parallel linear array, the proposed PM algorithm based on the large-spacing linear arrays has higher estimation precision. Many simulation experiments are presented to verify the effect of proposed scheme in reducing the mutual coupling and improving estimation precision.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Chen Gu ◽  
Hong Hong ◽  
Yusheng Li ◽  
Xiaohua Zhu ◽  
Jin He

This paper proposes a multi-invariance ESPRIT-based method for estimation of 2D direction (MIMED) of multiple non-Gaussian monochromatic signals using cumulants. In the MIMED, we consider an array geometry containing sparse L-shaped diversely polarized vector sensors plus an arbitrarily-placed single polarized scalar sensor. Firstly, we define a set of cumulant matrices to construct two matrix blocks with multi-invariance property. Then, we develop a multi-invariance ESPRIT-based algorithm with aperture extension using the defined matrix blocks to estimate two-dimensional directions of the signals. The MIMED can provide highly accurate and unambiguous direction estimates by extending the array element spacing beyond a half-wavelength. Finally, we present several simulation results to demonstrate the superiority of the MIMED.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Guimei Zheng ◽  
Jun Tang

We study two-dimensional direction of arrival (2D-DOA) estimation problem of monostatic MIMO radar with the receiving array which consists of electromagnetic vector sensors (EMVSs). The proposed angle estimation algorithm can be applied to the arbitrary and unknown array configuration, which can be summarized as follows. Firstly, EMVSs in the receiver of a monostatic MIMO radar are used to measure all six electromagnetic-field components of an incident wavefield. The vector sensor array with the six unknown electromagnetic-field components is divided into six spatially identical subarrays. Secondly, ESPRIT is utilized to estimate the rotational invariant factors (RIFs). Parts of the RIFs are picked up to restore the source’s electromagnetic-field vector. Last, a vector cross product operation is performed between electric field and magnetic field to obtain the Pointing vector, which can offer the 2D-DOA estimation. Prior knowledge of array elements’ positions and angle searching procedure are not necessary for the proposed 2D-DOA estimation method. Simulation results prove the validity of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Huaxin Yu ◽  
Xiaofeng Qiu ◽  
Xiaofei Zhang ◽  
Chenghua Wang ◽  
Gang Yang

We investigate the topic of two-dimensional direction of arrival (2D-DOA) estimation for rectangular array. This paper links angle estimation problem to compressive sensing trilinear model and derives a compressive sensing trilinear model-based angle estimation algorithm which can obtain the paired 2D-DOA estimation. The proposed algorithm not only requires no spectral peak searching but also has better angle estimation performance than estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm. Furthermore, the proposed algorithm has close angle estimation performance to trilinear decomposition. The proposed algorithm can be regarded as a combination of trilinear model and compressive sensing theory, and it brings much lower computational complexity and much smaller demand for storage capacity. Numerical simulations present the effectiveness of our approach.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ming Zhou ◽  
Xiaofei Zhang ◽  
Xiaofeng Qiu ◽  
Chenghua Wang

A novel algorithm is proposed for two-dimensional direction of arrival (2D-DOA) estimation with uniform rectangular array using reduced-dimension propagator method (RD-PM). The proposed algorithm requires no eigenvalue decomposition of the covariance matrix of the receive data and simplifies two-dimensional global searching in two-dimensional PM (2D-PM) to one-dimensional local searching. The complexity of the proposed algorithm is much lower than that of 2D-PM. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm and conventional PM algorithms, also very close to 2D-PM. The angle estimation error and Cramér-Rao bound (CRB) are derived in this paper. Furthermore, the proposed algorithm can achieve automatically paired 2D-DOA estimation. The simulation results verify the effectiveness of the algorithm.


2012 ◽  
Vol 195-196 ◽  
pp. 661-665
Author(s):  
Ping Tan ◽  
Zhi Yao Zhou ◽  
Yu Feng Zhang ◽  
Ye Luo ◽  
Hong Ma

It is needed to realize high resolution two dimensional (2D) direction of arrivals (DOA) estimation in determining the location of the mobile with high accuracy. In this paper, the problem of estimating the 2D DOA using uniform circular array (UCA) is investigated. Performance of 2D DOA estimation based on the real-valued unitary transformation MUSIC algorithm for UCA is presented, especially focusing on DOA estimation of multiple correlated signals.Then the validations of Unitary Transformation MUSIC algorithm are performed based on the measurement data in a wireless location system.


2016 ◽  
Vol 28 (1) ◽  
pp. 315-327 ◽  
Author(s):  
Sheng Liu ◽  
Lisheng Yang ◽  
Dong Li ◽  
Hailin Cao

Sign in / Sign up

Export Citation Format

Share Document