direction of arrival
Recently Published Documents


TOTAL DOCUMENTS

2490
(FIVE YEARS 569)

H-INDEX

57
(FIVE YEARS 6)

2022 ◽  
Vol 122 ◽  
pp. 103332
Author(s):  
Kenneth R. Mills ◽  
Fauzia Ahmad ◽  
Elias Aboutanios

2022 ◽  
Vol 12 (2) ◽  
pp. 895
Author(s):  
Laura Pierucci

Unmanned aerial vehicles (UAV) have attracted increasing attention in acting as a relay for effectively improving the coverage and data rate of wireless systems, and according to this vision, they will be integrated in the future sixth generation (6G) cellular network. Non-orthogonal multiple access (NOMA) and mmWave band are planned to support ubiquitous connectivity towards a massive number of users in the 6G and Internet of Things (IOT) contexts. Unfortunately, the wireless terrestrial link between the end-users and the base station (BS) can suffer severe blockage conditions. Instead, UAV relaying can establish a line-of-sight (LoS) connection with high probability due to its flying height. The present paper focuses on a multi-UAV network which supports an uplink (UL) NOMA cellular system. In particular, by operating in the mmWave band, hybrid beamforming architecture is adopted. The MUltiple SIgnal Classification (MUSIC) spectral estimation method is considered at the hybrid beamforming to detect the different direction of arrival (DoA) of each UAV. We newly design the sum-rate maximization problem of the UAV-aided NOMA 6G network specifically for the uplink mmWave transmission. Numerical results point out the better behavior obtained by the use of UAV relays and the MUSIC DoA estimation in the Hybrid mmWave beamforming in terms of achievable sum-rate in comparison to UL NOMA connections without the help of a UAV network.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Min Huang ◽  
Bin Zheng ◽  
Tong Cai ◽  
Xiaofeng Li ◽  
Jian Liu ◽  
...  

Abstract Metasurfaces, interacted with artificial intelligence, have now been motivating many contemporary research studies to revisit established fields, e.g., direction of arrival (DOA) estimation. Conventional DOA estimation techniques typically necessitate bulky-sized beam-scanning equipment for signal acquisition or complicated reconstruction algorithms for data postprocessing, making them ineffective for in-situ detection. In this article, we propose a machine-learning-enabled metasurface for DOA estimation. For certain incident signals, a tunable metasurface is controlled in sequence, generating a series of field intensities at the single receiving probe. The perceived data are subsequently processed by a pretrained random forest model to access the incident angle. As an illustrative example, we experimentally demonstrate a high-accuracy intelligent DOA estimation approach for a wide range of incident angles and achieve more than 95% accuracy with an error of less than 0.5 ° $0.5{\degree}$ . The reported strategy opens a feasible route for intelligent DOA detection in full space and wide band. Moreover, it will provide breakthrough inspiration for traditional applications incorporating time-saving and equipment-simplified majorization.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 220
Author(s):  
Liyu Lin ◽  
Chaoran She ◽  
Yun Chen ◽  
Ziyu Guo ◽  
Xiaoyang Zeng

For direction of arrival (DoA) estimation, the data-driven deep-learning method has an advantage over the model-based methods since it is more robust against model imperfections. Conventionally, networks are based singly on regression or classification and may lead to unstable training and limited resolution. Alternatively, this paper proposes a two-branch neural network (TB-Net) that combines classification and regression in parallel. The grid-based classification branch is optimized by binary cross-entropy (BCE) loss and provides a mask that indicates the existence of the DoAs at predefined grids. The regression branch refines the DoA estimates by predicting the deviations from the grids. At the output layer, the outputs of the two branches are combined to obtain final DoA estimates. To achieve a lightweight model, only convolutional layers are used in the proposed TB-Net. The simulation results demonstrated that compared with the model-based and existing deep-learning methods, the proposed method can achieve higher DoA estimation accuracy in the presence of model imperfections and only has a size of 1.8 MB.


2022 ◽  
Author(s):  
Mengmeng Li

In this paper, we present a metasurface-based Direction of Arrival (DoA) estimation method that exploits the properties of space-time modulated reflecting metasurfaces to estimate in real-time the impinging angle of an illuminating monochromatic plane wave. The approach makes use of the amplitude unbalance of the received fields at broadside at the frequencies of the two first-order harmonics generated by the interaction between the incident plane wave and the modulated metasurface. Here, we first describe analytically how to generate the desired higher-order harmonics in the reflected spectrum and how to realize the breaking of the spatial symmetry of each order harmonic scattering pattern. Then, the one dimensional (1D) omnidirectional incident angle can be analytically computed using +1st and -1st order harmonics. The approach is also extended to 2D DoA estimation by using two orthogonally arranged 1D DoA modulation arrays. The accuracy of 1D DoA estimation is verified through full-wave numerical simulations. Compared to conventional DoA estimation methods, the proposed approach simplifies the computation and hardware complexity, ensuring at the same time estimation accuracy. The proposed method may have potential applications in wireless communications, target recognition, and identification.


2022 ◽  
Author(s):  
Mengmeng Li

In this paper, we present a metasurface-based Direction of Arrival (DoA) estimation method that exploits the properties of space-time modulated reflecting metasurfaces to estimate in real-time the impinging angle of an illuminating monochromatic plane wave. The approach makes use of the amplitude unbalance of the received fields at broadside at the frequencies of the two first-order harmonics generated by the interaction between the incident plane wave and the modulated metasurface. Here, we first describe analytically how to generate the desired higher-order harmonics in the reflected spectrum and how to realize the breaking of the spatial symmetry of each order harmonic scattering pattern. Then, the one dimensional (1D) omnidirectional incident angle can be analytically computed using +1st and -1st order harmonics. The approach is also extended to 2D DoA estimation by using two orthogonally arranged 1D DoA modulation arrays. The accuracy of 1D DoA estimation is verified through full-wave numerical simulations. Compared to conventional DoA estimation methods, the proposed approach simplifies the computation and hardware complexity, ensuring at the same time estimation accuracy. The proposed method may have potential applications in wireless communications, target recognition, and identification.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Faan Wang ◽  
Liwei Xu ◽  
Xianjian Jin ◽  
Guodong Yin ◽  
Ying Liu

The rapid development of science and technology has created favorable conditions for Connected and Automated Vehicles (CAVs). Accurate localization is one of the fundamental functions of CAV to realize some advanced operations such as vehicle platooning. However, complicated urban traffic environments, such as the flyover, significantly influence vehicular positioning accuracy. The inability of CAV to accurately perceive self-localization information has become an urgent issue to be addressed. This paper proposed a novel cooperative localization method by introducing the relative Direction-of-Arrival (DOA) and Relative Distance (RD) into CAV to improve the localization accuracy of CAV in the multivehicle environment. First, the three-dimensional positioning error model of the host vehicle concerning adjacent vehicles in azimuth angle and pitch angle and intervehicle distances under the vehicle-to-vehicle communication was established. Second, two least-squares estimation algorithms, linear and nonlinear, are established to decrease the position errors by combining relative DOA and RD measurement information. To verify the proposed algorithm's effect, the PreScan-Simulink joint simulation is carried out. The results show that the host vehicle's localization accuracy by the proposed method can be improved by 25% compared with direct linearization. Besides, by combining relative DOA and relative RD measurement, the locating capability of the least-square-based nonlinear optimization method can be enhanced by 22%.


2022 ◽  
Vol 70 (1) ◽  
pp. 581-599
Author(s):  
Alamgir Safi ◽  
Muhammad Asghar Khan ◽  
Fahad Algarni ◽  
Muhammad Adnan Aziz ◽  
M. Irfan Uddin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document