Friction stir welding of ultra low carbon steel: microstructure, mechanical properties and electrochemical study

2019 ◽  
Vol 116 (1) ◽  
pp. 118
Author(s):  
Ishita Koley ◽  
Sukumar Kundu ◽  
Satish V. Kailas

In the present investigation, the friction stir welding of ultra low carbon steel was carried out at different tool rotational speeds of 300 to 900 rpm in steps of 150 rpm for 30 mm/min traverse speed. The macro and microstructures were examined to identify the different areas of stir zone, thermomechanically affected zone and heat affected zone of the welded joints. Tensile strength of the welded joints was evaluated and maximum tensile strength of ∼336 MPa was obtained at 450 rpm tool rotational speed. Microhardness was measured along the cross section of the welded joint. The maximum hardness was observed at stir zone when compared to thermomechanically affected zone and heat affected zone. The hardness values decreased with the increase in tool rotational speeds in the stir zone. Electrochemical study was investigated in 0.1 mol/L HCl solution using various electrochemical measurements such as open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization. The corrosion rate at stir zone decreased with the increase in tool rotational speed.

2020 ◽  
Vol 1546 ◽  
pp. 012057
Author(s):  
I K Chenykh ◽  
E V Vasil’ev ◽  
A N Abakumov ◽  
N V Zakharova ◽  
K A Sinogina

2018 ◽  
Vol 4 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Mohamed Mohamed Abd Elnabi ◽  
Tarek Abd Elsadek Osman ◽  
Alaa Eldeen El Mokadem ◽  
Abou Bakr Elshalakany 

The purpose of this research is to use friction stir welding (FSW) to join dissimilar  metals, annealed low carbon steel and A1050 pure aluminum. A butt joint with a similar sheet thickness of 1.9 mm was applied. The novelties of the research are relatively using high generated heat produced by a combination of low traverse speed and high rotational speed to perform the dissimilar joints and using a tool material (K107cold work tool steel) which has not been used in FSW with tool cooling. The present work studied the effect of FSW variables such as tilt angle, tool cooling, base metal location on mechanical properties. Tensile tests were used to evaluate the mechanical properties of the dissimilar joints. The microstructure specimens were examined using a scanning electron microscope (SEM). Sound dissimilar joints were successfully produced. The maximum joint efficiency obtained in this study is 51.7% of the aluminum tensile strength. The microstructure images showed that many steel fragments were sheared off from the steel surface by the tool action and scattered in the weld nugget, a continuous intermetallic compound (IMC) layer formed at the interface, the thickness of the IMC layer at the interface decreased in the thickness direction of the weld. FeAl3 IMC phase was only observed at the interface.


2006 ◽  
Vol 423 (1-2) ◽  
pp. 324-330 ◽  
Author(s):  
R. Ueji ◽  
H. Fujii ◽  
L. Cui ◽  
A. Nishioka ◽  
K. Kunishige ◽  
...  

2010 ◽  
Vol 89-91 ◽  
pp. 763-768 ◽  
Author(s):  
Yoshikazu Todaka ◽  
Kazunobu Morisako ◽  
Masaaki Kumagai ◽  
Yoshihisa Matsumoto ◽  
Minoru Umemoto

The tensile property and hydrogen embrittlement (HE) behavior in the submicrocrystalline ultra-low carbon steel produced by HPT straining were investigated. Elongated grains with 300 nm thickness and 600 nm length with high dislocation density were formed by the HPT straining at a rotation-speed of 0.2 rpm under a compression pressure of 5 GPa. The engineering tensile strength of the HPT processed ultra-low carbon steel for > 5 turns was 1.9 GPa, which is similar to the value of maraging high-alloy steels. The elongation increased with strain (at 5 to 10 turns), is caused by the reduction of the stress concentration due to the existence of continuously recrystallized grains. HE occurred in the HPT processed specimen for 5 turns with high tensile strength of 1.9 GPa under hydrogen atmosphere. However, its HE was suppressed via recovery process by annealing at low temperature while maintaining the high strength.


Author(s):  
Pardeep Pankaj ◽  
Pratik S. Sawarkar ◽  
Avinish Tiwari ◽  
Pankaj Biswas ◽  
Sukhomay Pal

Sign in / Sign up

Export Citation Format

Share Document