dissimilar joints
Recently Published Documents


TOTAL DOCUMENTS

426
(FIVE YEARS 175)

H-INDEX

28
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 543
Author(s):  
Nkopane Angelina Ramaphoko ◽  
Samuel Skhosane ◽  
Nthabiseng Maledi

This paper presents the laser beam welding process of a lap joint between galvanized steel (Z225) and an aluminum alloy (A6000) from an IPG fiber laser. Welding of steel to aluminum has become popular in the automotive industry as a means of reducing the total vehicle body mass. This approach reduces fuel consumption and, ultimately, carbon emissions. Laser welding parameters used to control heat input for the study were laser power ranging between 800 and 1200 W, as well as laser welding speeds between 2 and 4 m/min. Distinct features of the dissimilar joints were microscopically examined. The SEM-EDS technique was employed to study the intermetallic phases along the Fe-Al interface. The outcome revealed the presence of “needle-like phases” and “island-shaped phases” at high heat inputs. Traces of both Fe2Al5 and FeAl3 phases were detected. For low heat input, there was evidence of insufficient fusion. Weld width was influenced by welding parameters and increased with an increase in heat input. Mechanical properties of the joints indicated that the microhardness values of the weld joints were higher than those of both base metals. The maximum tensile shear strength obtained was 1.79 kN for a sample produced at 1200 W and 3 m/min.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 23
Author(s):  
Liangwen Xie ◽  
Xianyong Zhu ◽  
Yuexiang Fan ◽  
Weijia Sun ◽  
Peng Wang ◽  
...  

In order to clarify the microstructural evolution and the mechanical property of dissimilar friction stir-welded joints of ZK60 and Mg-4.6Al-1.2Sn-0.7Zn magnesium alloys, two types of arrangement with ZK60 at advancing side (AS) or retreating side (RS) were adopted. The macrostructure and the microstructure of the dissimilar welded joints were discussed, and the microhardness and the transverse tensile properties of the joints were measured. There are three stirring sub-zones with different compositions and two clear interfaces within the joints. Due to the effect of both the original grain size of base materials and the growth of recrystallized grains, in the stir zone (SZ), the grain size of ZK60 increased slightly, while the grain size of Mg-4.6Al-1.2Sn-0.7Zn decreased significantly. The dissolution of precipitates was gradually significant from RS to AS within the SZ due to the gradual increase in strain and heat. The grain refinement led to an increase in hardness, while the dissolution of precipitates resulted in a decrease in hardness. The performance of the joints obtained with ZK60 placed on the RS is slightly better than that of that on the AS. The tensile fracture of both joints occurred at the interface between SZ and the thermos-mechanical affected zone at the AS, and showed a quasi-dissociative fracture.


Author(s):  
Rohit Verma ◽  
Lochan Sharma ◽  
Mayank Chauhan ◽  
Rahul Chhibber ◽  
Kanwer Singh Arora

The automobile industry has started using adhesive bonding to join load bearing components which aerospace industry has been using for decades. Adhesive lap joints are used frequently in the manufacture of automobile. In present study, structural adhesives were used to join the aluminium alloy (AA5083 H111) with the HSS dual phase (DP780) steel. Adhesive bonding appears to be one of the appropriate methods of joining dissimilar materials. The aim of this work is to analyze the tensile strength of similar and dissimilar joints. The influence of various parameters was also investigated such as the overlap length and the bondline thickness of specimens. In DP steel, there is 22% increase in strength for similar lap joint when overlap length changes from 10 mm to 15 mm, while there is 45% increase in strength when it varies from 15 mm to 20 mm. Similarly in case of Al alloy, there is 26% increased strength for similar lap joints when length varies from 10 mm to 15 mm, while it increased to 42% when length changes from 15 mm to 25 mm and there is about 35% increase in strength for length varies from 20 mm to 25 mm. In case of dissimilar joints, firstly there is about 16% increase in strength then there is 5% decrease while after that there is 45% increase in strength. Adhesion failure, cohesion failure and mixed failure were obtained experimentally during failure mode analysis. As the strength of joint increases, failure mode shows a transition from adhesion failure to cohesion failure. From the literature survey it is evident that limited work has been carried out on analysis of shear-tensile strength of adhesively bonded steel and aluminium joint with variation in bonding parameters. Not much work on failure mode analysis of bonded joints during tensile testing has been reported. In present work a noval attempt has been made to analyze the shear-tensile strength and failure mode of adhesively bonded steel and aluminium joint with variation in bonding parameters.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042015
Author(s):  
R Rzaev ◽  
A Chularis ◽  
I Derzhavin ◽  
G Bich ◽  
D Merkulov

Abstract The article describes the mechanisms and causes of the occurrence of intermetallic phases during friction stir welding of dissimilar joints. The nucleation and growth of intermetallic phases for a pair of dissimilar metals to be welded under comparatively favorable time and temperature conditions of the FSW is facilitated by the atomic-vacancy environment, which is responsible for the continuous atomic-structural bond and mass transfer of accumulated atoms in local regions of the welded joint with an equiaxial grain lamella-shear structure of the welded core. compounds with a concentration close to critical, combined with others in a superplastic state. In the process of forming a welded joint under the influence of a moving and rotating welding tool, the lamellae are subjected to bending and torsional stresses with simultaneous tension, causing them to generate point defects and especially a large number of various types of dislocations, triggering the formation of edge dislocations in the lamellae, which are lined up in the process into dislocation walls, dividing lamella grains into separate fragmentary subgrain boundaries, along which the processes of fragmentation and dispersion develop. This phenomenon is explained by the fact that the processes of fragmentation and dispersion of IMP lead to the composition of the nugget of the welded joint by fragments, often nano-sized fragments of various configurations, which act as hardeners of the weld nugget matrix.


Author(s):  
Seeram Roopa

Abstract: Now days, most of the structural fabrications possess welded joints that are produced using suitable welding technique. However, the joining of thick plates in a single pass welding is a cumbersome task to many fabricators. Likewise, the selection of welding technique, filler wire and welding condition for the similar and dissimilar welding of several metals is at the development stage. The similar and dissimilar metal joints of have been emerged as a structural material for various industrial applications which provides good combination of mechanical properties like strength, corrosion resistance with lower cost. Selections of joining process for such a material are difficult because of their physical and chemical properties. The stainless steel of similar and dissimilar material joints are very common structural applications joining of stainless steel is very critical because of carbon precipitation and loss of chromium leads to increase in porosity affects the quality of joint leads deteriorate strength. In the present study, stainless steel of grades 310 and 316 were welded by Tungsten Inert Gas (TIG) and Metal Inert Gas (MIG) welding with compound flux of 50 % SiO2 + 50 % TiO2 processes. The mechanical behavior like hardness, tensile strength and bending properties of similar and dissimilar metal joints were investigated. Keywords: Mechanical Properties, ATIG, MIG, SS310, SS316, Micro Structure.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6591
Author(s):  
Anupam Sauraw ◽  
Atul Kumar Sharma ◽  
Dariusz Fydrych ◽  
Sachin Sirohi ◽  
Ankur Gupta ◽  
...  

This article deals with the dissimilar joining of two different grade Cr-Mo steel (2.25Cr-1Mo: P22 and modified 9Cr-1Mo: P91) for power plant application. The dissimilar butt-welded joint was produced for conventional V groove design by using the gas tungsten arc welding (GTAW) process with the application of an ERNiCrMo-3 Ni-based super alloy filler. A microstructure characterization was performed to measure the inhomogeneity in the microstructure and element diffusion across the interface in a welded joint. The experiments were also performed to evaluate the mechanical properties of the dissimilar welded joint in as-welded (AW) and post-weld heat treatment (PWHT) conditions. An acceptable level of the mechanical properties was obtained for the AW joint. After PWHT, a significant level of the element diffusion across the interface of the weld metal and P22 steel was observed, resulting in heterogeneity in microstructure near the interface, which was also supported by the hardness variation. Inhomogeneity in mechanical properties (impact strength and hardness) was measured across the weldments for the AW joint and was reduced after the PWHT. The tensile test results indicate an acceptable level of tensile properties for the welded joint in both AW and PWHT conditions and failure was noticed in the weak region of the P22 steel instead of the weld metal.


Sign in / Sign up

Export Citation Format

Share Document