scholarly journals Long term variations of galactic cosmic radiation on board the International Space Station, on the Moon and on the surface of Mars

Author(s):  
Thomas Berger ◽  
Daniel Matthiä ◽  
Sönke Burmeister ◽  
Cary Zeitlin ◽  
Ryan Rios ◽  
...  

<div class="abstract"> <p> <div>&lt;div class="abstract"&gt; &lt;div&gt;&lt;p&gt;The radiation environment in free space and the related radiation exposure is seen as one of the main health detriments for future long-duration human exploration missions beyond Low Earth Orbit (LEO). The steady flux of energetic particles in the galactic cosmic radiation (GCR) produces&amp;nbsp; a low dose-rate radiation exposure, which is heavily influenced by several factors including the solar cycle, the presence of an atmosphere, relevant magnetic fields (as on Earth) and of course by the relevant spacecraft shielding. Investigations of the GCR variations over the course of a solar cycle provide valuable data for exploration mission planning and for the determination of the radiation load received due to the GCR environment. Within the current work these investigations have been performed applying three datasets generated on board the International Space Station (ISS) with the DOSTEL instruments in the frame of the DOSIS and DOSIS-3D projects, with the CRaTER instrument in a Moon orbit and with the MSL-RAD instrument on the way to and on the surface of Mars. To derive GCR dose contributions on board the ISS two procedures have been developed separating the contributions from GCR from passing&amp;rsquo;s through the South Atlantic Anomaly (SAA), as well as ways to extrapolate the GCR dose measured on board the ISS to free space based on various ranges of the McIlwain &lt;em&gt;L&lt;/em&gt;-shell parameter. At the end we provide a dataset spanning the timeframe for GCR measurements on the ISS (2009 &amp;ndash; 2011 &amp;amp; 2012 &amp;ndash; 2019), Moon (2009 &amp;ndash; 2019) and Mars (2012 &amp;ndash; 2019), thereby covering the time span from the deep minimum of solar cycle 23, the ascending phase and maximum of solar cycle 24, and the descending phase of cycle 24, which is ongoing at the time of this writing.&lt;/p&gt; &lt;/div&gt; &lt;/div&gt;</div> </p> </div>

2020 ◽  
Vol 49 (1_suppl) ◽  
pp. 194-199
Author(s):  
T. Komiyama

Japanese astronauts started staying at the International Space Station (ISS) in 2009, with each stay lasting for approximately 6 months. In total, seven Japanese astronauts have stayed at the ISS eight times. As there is no law for protection against space radiation exposure of astronauts in Japan, the Japan Aerospace Exploration Agency (JAXA) created its own rules and has applied them successfully to radiation exposure management for Japanese ISS astronauts, collaborating with ISS international partners. Regarding dose management, JAXA has implemented several dose limits to protect against both the stochastic effects of radiation and dose-dependent tissue reactions. The scope of the rules includes limiting exposure during spaceflight, exposure during several types of training, and exposure from astronaut-specific medical examinations. We, therefore, are tasked with calculating the dose from all exposure types applied to the dose limits annually for each astronaut. Whenever a Japanese astronaut is at the ISS, we monitor readings of an instrument in real-time to confirm that the exposed dose is below the set limits, as the space radiation environment can fluctuate in relation to solar activity.


Author(s):  
Samy El-Jaby ◽  
Brent J. Lewis ◽  
Leena Tomi ◽  
Lembit Sihver ◽  
Tatsuhiko Sato ◽  
...  

2014 ◽  
Vol 14 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Elke Rabbow ◽  
Petra Rettberg ◽  
Simon Barczyk ◽  
Maria Bohmeier ◽  
Andre Parpart ◽  
...  

AbstractEXPOSE-R flew as the second of the European Space Agency (ESA) EXPOSE multi-user facilities on the International Space Station. During the mission on the external URM-D platform of the Zvezda service module, samples of eight international astrobiology experiments selected by ESA and one Russian guest experiment were exposed to low Earth orbit space parameters from March 10th, 2009 to January 21st, 2011. EXPOSE-R accommodated a total of 1220 samples for exposure to selected space conditions and combinations, including space vacuum, temperature cycles through 273 K, cosmic radiation, solar electromagnetic radiation at >110, >170 or >200 nm at various fluences up to GJ m−2. Samples ranged from chemical compounds via unicellular organisms and multicellular mosquito larvae and seeds to passive radiation dosimeters. Additionally, one active radiation measurement instrument was accommodated on EXPOSE-R and commanded from ground in accordance with the facility itself. Data on ultraviolet radiation, cosmic radiation and temperature were measured every 10 s and downlinked by telemetry and data carrier every few months. The EXPOSE-R trays and samples returned to Earth on March 9th, 2011 with Shuttle flight, Space Transportation System (STS)-133/ULF 5, Discovery, after successful total mission duration of 27 months in space. The samples were analysed in the individual investigators laboratories. A parallel Mission Ground Reference experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions following to the data transmitted from the flight mission.


2007 ◽  
Vol 54 (4) ◽  
pp. 1444-1453 ◽  
Author(s):  
Tore Ersmark ◽  
Per Carlson ◽  
Eamonn Daly ◽  
Christer Fuglesang ◽  
Irena Gudowska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document