Recent Advances in C–Br Bond Formation

Synlett ◽  
2021 ◽  
Author(s):  
Ying-Yeung Yeung ◽  
Jonathan Wong

AbstractOrganobromine compounds are extremely useful in organic synthesis. In this perspective, a focused discussion on some recent advancements in C–Br bond-forming reactions is presented.1 Introduction2 Selected Recent Advances2.1 Catalytic Asymmetric Bromopolycyclization of Olefinic Substrates2.2 Catalytic Asymmetric Intermolecular Bromination2.3 Some New Catalysts and Reagents for Bromination2.4 Catalytic Site-Selective Bromination of Aromatic Compounds2.5 sp3 C–H Bromination via Atom Transfer/Cross-Coupling3 Outlook

Synthesis ◽  
2018 ◽  
Vol 51 (01) ◽  
pp. 135-145 ◽  
Author(s):  
Naohiko Yoshikai

This Short Review describes recent developments in cobalt-catalyzed enantioselective C–C bond-forming reactions. The article focuses on reactions that most likely involve chiral organocobalt species as crucial catalytic intermediates and their mechanistic aspects.1 Introduction2 Hydrovinylation3 C–H Functionalization4 Cycloaddition and Cyclization5 Addition of Carbon Nucleophiles6 Cross-Coupling7 Conclusion


2020 ◽  
Vol 16 ◽  
pp. 691-737 ◽  
Author(s):  
Balaram S Takale ◽  
Ruchita R Thakore ◽  
Elham Etemadi-Davan ◽  
Bruce H Lipshutz

Numerous reactions generating C–Si and C–B bonds are in focus owing to the importance of incorporating silicon or boron into new or existing drugs, in addition to their use as building blocks in cross-coupling reactions en route to various targets of both natural and unnatural origins. In this review, recent protocols relying on copper-catalyzed sp3 carbon–silicon and carbon–boron bond-forming reactions are discussed.


2020 ◽  
Vol 23 (28) ◽  
pp. 3206-3225 ◽  
Author(s):  
Amol D. Sonawane ◽  
Mamoru Koketsu

: Over the last decades, many methods have been reported for the synthesis of selenium- heterocyclic scaffolds because of their interesting reactivities and applications in the medicinal as well as in the material chemistry. This review describes the recent numerous useful methodologies on C-Se bond formation reactions which were basically carried out at low and room temperature.


2020 ◽  
Vol 7 (1) ◽  
pp. 23-39 ◽  
Author(s):  
Kantharaju Kamanna ◽  
Santosh Y. Khatavi

Multi-Component Reactions (MCRs) have emerged as an excellent tool in organic chemistry for the synthesis of various bioactive molecules. Among these, one-pot MCRs are included, in which organic reactants react with domino in a single-step process. This has become an alternative platform for the organic chemists, because of their simple operation, less purification methods, no side product and faster reaction time. One of the important applications of the MCRs can be drawn in carbon- carbon (C-C) and carbon-heteroatom (C-X; X = N, O, S) bond formation, which is extensively used by the organic chemists to generate bioactive or useful material synthesis. Some of the key carbon- carbon bond forming reactions are Grignard, Wittig, Enolate alkylation, Aldol, Claisen condensation, Michael and more organic reactions. Alternatively, carbon-heteroatoms containing C-N, C-O, and C-S bond are also found more important and present in various heterocyclic compounds, which are of biological, pharmaceutical, and material interest. Thus, there is a clear scope for the discovery and development of cleaner reaction, faster reaction rate, atom economy and efficient one-pot synthesis for sustainable production of diverse and structurally complex organic molecules. Reactions that required hours to run completely in a conventional method can now be carried out within minutes. Thus, the application of microwave (MW) radiation in organic synthesis has become more promising considerable amount in resource-friendly and eco-friendly processes. The technique of microwaveassisted organic synthesis (MAOS) has successfully been employed in various material syntheses, such as transition metal-catalyzed cross-coupling, dipolar cycloaddition reaction, biomolecule synthesis, polymer formation, and the nanoparticle synthesis. The application of the microwave-technique in carbon-carbon and carbon-heteroatom bond formations via MCRs with major reported literature examples are discussed in this review.


RSC Advances ◽  
2015 ◽  
Vol 5 (22) ◽  
pp. 16801-16814 ◽  
Author(s):  
Zhi Guan ◽  
Ling-Yu Li ◽  
Yan-Hong He

This article reviews the hydrolase-catalyzed asymmetric carbon–carbon bond-forming reactions for the preparation of enantiomerically enriched compounds in organic synthesis.


2018 ◽  
Vol 47 (8) ◽  
pp. 2591-2608 ◽  
Author(s):  
Yating Zhao ◽  
Wujiong Xia

This review highlights the recent advances in cross-dehydrogenative amination for C–N bond construction from C–H/N–H cross-coupling partners through photocatalytic and/or electronic techniques.


2021 ◽  
Author(s):  
Florian Matz ◽  
Arif Music ◽  
Dorian Didier ◽  
Thomas C. Jagau

Cross-coupling reactions for C-C bond formation represent a cornerstone of organic synthesis. In most cases, they make use of transition metals, which has several downsides. Recently, metal-free alternatives relying on electrochemistry have gained interest. One example of such a reaction is the oxidation of tetraorganoborate salts that initiates aryl-aryl and aryl-alkenyl couplings with promising selectivities. This work investigates the mechanism of this reaction computationally using density functional and coupled-cluster theory. Our calculations reveal a distinct difference between aryl-alkenyl and aryl-aryl couplings: While C-C bond formation occurs irreversibly and without an energy barrier if an alkenyl residue is involved, many intermediates can be identified in aryl-aryl couplings. In the latter case, intramolecular transitions between reaction paths leading to different products are possible. Based on the energy differences between these intermediates, we develop a kinetic model to estimate product distributions for aryl-aryl couplings.<br>


2021 ◽  
Author(s):  
Florian Matz ◽  
Arif Music ◽  
Dorian Didier ◽  
Thomas C. Jagau

Cross-coupling reactions for C-C bond formation represent a cornerstone of organic synthesis. In most cases, they make use of transition metals, which has several downsides. Recently, metal-free alternatives relying on electrochemistry have gained interest. One example of such a reaction is the oxidation of tetraorganoborate salts that initiates aryl-aryl and aryl-alkenyl couplings with promising selectivities. This work investigates the mechanism of this reaction computationally using density functional and coupled-cluster theory. Our calculations reveal a distinct difference between aryl-alkenyl and aryl-aryl couplings: While C-C bond formation occurs irreversibly and without an energy barrier if an alkenyl residue is involved, many intermediates can be identified in aryl-aryl couplings. In the latter case, intramolecular transitions between reaction paths leading to different products are possible. Based on the energy differences between these intermediates, we develop a kinetic model to estimate product distributions for aryl-aryl couplings.<br>


2019 ◽  
Vol 23 (15) ◽  
pp. 1601-1662 ◽  
Author(s):  
Mohamed R. Shaaban ◽  
Thoraya. A. Farghaly ◽  
Afaf Y. Khormi ◽  
Ahmad M. Farag

C-C cross-couplings constitute the largest diversity of organic reactions of chemical, biomedical, and industrial significance. They are also among the most frequently encountered reactions used in the synthesis of numerous drugs and relevant pharmaceutical substances. Development of an easily accessed, efficient, stable, and low cost catalyst is an attractive area of research in such kind of organic synthesis. This review highlights the remarkable and recent achievements made recently in the synthesis and use of palladium(II) complexes catalysts, that are based on heterocycles as ligands in their constitution, in the Suzuki-Miyaura cross-coupling.


Sign in / Sign up

Export Citation Format

Share Document