Inhibition of Platelet Adhesion to Fibrin(ogen) in Flowing Whole Blood by Arg-Gly-Asp and Fibrinogen γ-Chain Carboxy Terminal Peptides

1992 ◽  
Vol 68 (06) ◽  
pp. 694-700 ◽  
Author(s):  
Roy R Hantgan ◽  
Silvia C Endenburg ◽  
I Cavero ◽  
Gérard Marguerie ◽  
André Uzan ◽  
...  

SummaryWe have employed synthetic peptides with sequences corresponding to the integrin receptor-recognition regions of fibrinogen as inhibitors of platelet aggregation and adhesion to fibrinogen-and fibrin-coated surfaces in flowing whole blood, using a rectangular perfusion chamber at wall shear rates of 300 s–1 and 1,300 s–1. D-RGDW caused substantial inhibition of platelet aggregation and adhesion to fibrinogen and fibrin at both shear rates, although it was least effective at blocking platelet adhesion to fibrin at 300 s–1. RGDS was a weaker inhibitor, and produced a biphasic dose-response curve; SDRG was inactive. HHLGGAK-QAGDV partially inhibited platelet aggregation and adhesion to fibrin(ogen) at both shear rates. These results support the identification of an RGD-specific receptor, most likely the platelet integrin glycoprotein IIb: III a, as the primary receptor responsible for platelet: fibrin(ogen) adhesive interactions under flow conditions, and indicate that platelet adhesion to surface bound fibrin(ogen) is stabilized by multivalent receptor-ligand contacts.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3197-3197 ◽  
Author(s):  
Yan Yang ◽  
Zhenyin Shi ◽  
Adili Reheman ◽  
Wuxun Jin ◽  
Conglei Li ◽  
...  

Abstract Abstract 3197 Background: Thrombosis and cardiovascular diseases (CVDs) result from blood vessel occlusion by inappropriately activated platelets. They are the leading causes of morbidity and mortality worldwide. Anthocyanins are major phytochemicals abundant in plant food and have been shown to play a protective role against CVDs. Our previous studies have demonstrated that anthocyanins are antioxidative and prevent inflammation (J Biol Chem. 2005; 280:36792-01; Arterioscler Thromb Vasc Biol. 2007; 27:519-24), which may indirectly affect platelet function. It has also been reported that anthocyanins affect platelet activities in whole blood and platelet rich plasma (PRP). However, the direct effects of anthocyanins on platelet function and thrombus formation have not been studied. Methods: Here we investigated the effects of anthocyanins on thrombosis using purified platelets as well as several thrombosis models in vitro and in vivo. Cyaniding-3-gulucoside (Cy-3-g) and delphinidin-3-glucoside (Dp-3-g), the two predominantly bioactive compounds of anthocyanin preparations, were prepared from Polyphenol AS Company in Norway. Purified gel-filtered platelets and PRP from healthy human volunteers and C57BL/6J mice were incubated at 37°C for 10 minutes with different concentrations (0.5μM, 5μM and 50μM) of Cy-3-g, Dp-3-g or PBS buffer as a control. Platelet aggregation was assessed by aggregometry using 5μM ADP, 10μg/ml collagen, or 100μM thrombin receptor activating peptide (TRAP; AYPGKF) as agonists. Platelet adhesion and aggregation were assessed in response to an immobilized collagen matrix in an ex vivo perfusion chamber at both high (1800 s-1) and low (600 s-1) shear rates. The expression of activated GPIIbIIIa was determined via PAC-1 monoclonal antibody in flow cytometry. Lastly, the effects of anthocyanins on thrombus formation in C57BL/6J mice were assessed using a FeCl3-induced intravital microscopy thrombosis model. Results: Both Cy-3-g and Dp-3-g significantly inhibited platelet aggregation induced by collagen and TRAP in gel-filtered platelets, and inhibited aggregation induced by ADP, TRAP and collagen in human and mouse PRP. These inhibitory functions were observed at Cy-3-g and Dp-3-g doses as low as 0.5μM. Cy-3-g and Dp-3-g also reduced the surface expression of activated GPIIbIIIa on resting human platelets in a dose-dependent manner. These compounds also markedly reduced platelet adhesion and aggregation in perfusion chamber assays at both low and high shear rates. Using intravital microscopy, we further demonstrated that Cy-3-g and Dp-3-g decreased platelet deposition, destabilized thrombi, and prolonged the time required for thrombus formation and vessel occlusion. Conclusions: our data clearly demonstrated for the first time that anthocyanin compounds directly inhibited platelet activation, adhesion and aggregation, as well as attenuated thrombus growth at both arterial and veinous shear stresses. These effects on platelets likely contribute to the protective effects of anthocyanins against thrombosis and CVDs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1990 ◽  
Vol 76 (2) ◽  
pp. 345-353 ◽  
Author(s):  
RR Hantgan ◽  
G Hindriks ◽  
RG Taylor ◽  
JJ Sixma ◽  
PG de Groot

We have investigated the molecular basis of thrombus formation by measuring the extent of platelet deposition from flowing whole blood onto fibrin-coated glass coverslips under well-defined shear conditions in a rectangular perfusion chamber. Platelets readily and specifically adhered to fibrin-coated coverslips in 5 minute perfusion experiments done at either low (300 s-1) or high (1,300 s-1) wall shear rates. Scanning electron microscopic examination of fibrin-coated coverslips after perfusions showed surface coverage by a monolayer of adherent, partly spread platelets. Platelet adhesion to fibrin was effectively inhibited by a monoclonal antibody (MoAb) specific for glycoprotein (GP) IIb:IIIa. The dose-response curve for inhibition of adhesion by anti-GPIIb:IIIa at both shear rates paralleled that for inhibition of platelet aggregation. Platelet aggregation and adhesion to fibrin were also blocked by low concentrations of prostacyclin. In contrast, anti- GPIb reduced adhesion by 40% at 300 s-1 and by 70% at 1,300 s-1. A similar pattern of shear rate-dependent, incomplete inhibition resulted with a MoAb specific for the GPIb-recognition region of von Willebrand factor (vWF). Platelets from an individual with severe von Willebrand's disease, whose plasma and platelets contained essentially no vWF, exhibited defective adhesion to fibrin, especially at the higher shear rate. Addition of purified vWF restored adhesion to normal values. These results are consistent with a two-site model for platelet adhesion to fibrin, in which the GPIIb:IIIa complex is the primary receptor, with GPIb:vWF providing a secondary adhesion pathway that is especially important at high wall shear rates.


Blood ◽  
1990 ◽  
Vol 76 (2) ◽  
pp. 345-353 ◽  
Author(s):  
RR Hantgan ◽  
G Hindriks ◽  
RG Taylor ◽  
JJ Sixma ◽  
PG de Groot

Abstract We have investigated the molecular basis of thrombus formation by measuring the extent of platelet deposition from flowing whole blood onto fibrin-coated glass coverslips under well-defined shear conditions in a rectangular perfusion chamber. Platelets readily and specifically adhered to fibrin-coated coverslips in 5 minute perfusion experiments done at either low (300 s-1) or high (1,300 s-1) wall shear rates. Scanning electron microscopic examination of fibrin-coated coverslips after perfusions showed surface coverage by a monolayer of adherent, partly spread platelets. Platelet adhesion to fibrin was effectively inhibited by a monoclonal antibody (MoAb) specific for glycoprotein (GP) IIb:IIIa. The dose-response curve for inhibition of adhesion by anti-GPIIb:IIIa at both shear rates paralleled that for inhibition of platelet aggregation. Platelet aggregation and adhesion to fibrin were also blocked by low concentrations of prostacyclin. In contrast, anti- GPIb reduced adhesion by 40% at 300 s-1 and by 70% at 1,300 s-1. A similar pattern of shear rate-dependent, incomplete inhibition resulted with a MoAb specific for the GPIb-recognition region of von Willebrand factor (vWF). Platelets from an individual with severe von Willebrand's disease, whose plasma and platelets contained essentially no vWF, exhibited defective adhesion to fibrin, especially at the higher shear rate. Addition of purified vWF restored adhesion to normal values. These results are consistent with a two-site model for platelet adhesion to fibrin, in which the GPIIb:IIIa complex is the primary receptor, with GPIb:vWF providing a secondary adhesion pathway that is especially important at high wall shear rates.


Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 1001-1009 ◽  
Author(s):  
RR Hantgan ◽  
SC Endenburg ◽  
JJ Sixma ◽  
PG de Groot

Abstract The role of the RGDX putative receptor-recognition sites, which are present on the alpha chains of fibrin, in promoting platelet adhesion has been examined in flowing whole blood using the rectangular perfusion chamber at wall shear rates of 340 and 1,600/s. Platelets adhered to a comparable extent to surfaces coated with native fibrin and surfaces coated with fragment X-fibrin, a product of limited fibrinolysis that lacks the RGDS sites normally present at positions 572 to 575 of the alpha chains. The strengths of these adhesive interactions were comparable based on the concentrations of the antiadhesive peptide D-RGDW required to block platelet deposition to native and fragment X-fibrin at both low and high wall shear rate. Blocking either or both RGDX sequences with peptide-specific monoclonal antibodies did not inhibit platelet deposition in perfusion experiments performed with normal blood at 340/s, indicating that neither RGD motif is required for adhesion. However, adhesion was partly inhibited by anti-RGDX antibodies when perfusions were performed with blood from an afibrinogenemic patient, suggesting the RGDX sequences may play a limited role in platelet deposition. Exposure of fibrin surfaces to plasminogen/tissue-type plasminogen activator did cause a time- dependent loss of adhesiveness, but this effect was only weakly correlated with proteolysis of the fibrin alpha chains. These observations provide evidence that neither RGDX sequence is required for platelets to adhere avidly to fibrin in flowing blood. These results further suggest that incomplete fibrinolysis yields a highly thrombogenic surface.


Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 1001-1009
Author(s):  
RR Hantgan ◽  
SC Endenburg ◽  
JJ Sixma ◽  
PG de Groot

The role of the RGDX putative receptor-recognition sites, which are present on the alpha chains of fibrin, in promoting platelet adhesion has been examined in flowing whole blood using the rectangular perfusion chamber at wall shear rates of 340 and 1,600/s. Platelets adhered to a comparable extent to surfaces coated with native fibrin and surfaces coated with fragment X-fibrin, a product of limited fibrinolysis that lacks the RGDS sites normally present at positions 572 to 575 of the alpha chains. The strengths of these adhesive interactions were comparable based on the concentrations of the antiadhesive peptide D-RGDW required to block platelet deposition to native and fragment X-fibrin at both low and high wall shear rate. Blocking either or both RGDX sequences with peptide-specific monoclonal antibodies did not inhibit platelet deposition in perfusion experiments performed with normal blood at 340/s, indicating that neither RGD motif is required for adhesion. However, adhesion was partly inhibited by anti-RGDX antibodies when perfusions were performed with blood from an afibrinogenemic patient, suggesting the RGDX sequences may play a limited role in platelet deposition. Exposure of fibrin surfaces to plasminogen/tissue-type plasminogen activator did cause a time- dependent loss of adhesiveness, but this effect was only weakly correlated with proteolysis of the fibrin alpha chains. These observations provide evidence that neither RGDX sequence is required for platelets to adhere avidly to fibrin in flowing blood. These results further suggest that incomplete fibrinolysis yields a highly thrombogenic surface.


Author(s):  
W. H. Zucker ◽  
R. G. Mason

Platelet adhesion initiates platelet aggregation and is an important component of the hemostatic process. Since the development of a new form of collagen as a topical hemostatic agent is of both basic and clinical interest, an ultrastructural and hematologic study of the interaction of platelets with the microcrystalline collagen preparation was undertaken.In this study, whole blood anticoagulated with EDTA was used in order to inhibit aggregation and permit study of platelet adhesion to collagen as an isolated event. The microcrystalline collagen was prepared from bovine dermal corium; milling was with sharp blades. The preparation consists of partial hydrochloric acid amine collagen salts and retains much of the fibrillar morphology of native collagen.


Blood ◽  
1996 ◽  
Vol 88 (7) ◽  
pp. 2569-2577 ◽  
Author(s):  
S Godyna ◽  
M Diaz-Ricart ◽  
WS Argraves

Fibulin-1 is a component of the extracellular matrix that surrounds vascular smooth muscle. This observation, along with the recent finding that fibulin-1 can bind fibrinogen (J Biol Chem 270:19458, 1995), prompted investigation into the potential role of fibulin-1 as a thrombogenic agent. In perfusion chamber assays, platelets in whole blood under flow conditions attached and spread on surfaces coated with fibulin-1. This adhesion was completely blocked by fibulin-1 antibodies. Platelets free of plasma did not attach to fibulin-1 coated surfaces; however, with the addition of fibrinogen, platelet adhesion to fibulin-1 took place. When detergent extracts of platelets were subjected to fibulin-1-Sepharose affinity chromatography, the integrin alpha IIb beta 3 was selected. Solid phase binding assays using purified components showed that integrin alpha IIb beta 3 could not bind directly to fibulin-1 but in the presence of fibrinogen the integrin bound to fibulin-1-coated surfaces. Monoclonal alpha IIb beta 3 antibodies capable of blocking its interaction with fibrinogen completely blocked platelet adhesion to fibulin-1 in both whole blood perfusion and static adhesion assays. The results show that fibulin-1 can support platelet attachment via a bridge of fibrinogen to the platelet integrin alpha IIb beta 3. When fibroblast monolayers containing extracellular matrix-incorporated fibulin-1 were used as adhesion substrates, platelet adhesion in the presence of fibrinogen could be inhibited by 30% using antibodies to fibulin-1. Following vascular injury, fibulin-1 present in the extracellular matrix of the vessel wall may therefore interact with plasma fibrinogen and promote platelet adhesion, leading to the formation of a platelet plug. Thus, fibulin-1 joins the list of matrix proteins including collagens I and IV and fibronectin that mediate platelet adhesion via a plasma protein bridge. This bridging phenomenon may represent a general mechanism by which platelets interact with exposed subendothelial matrices following vascular injury.


1975 ◽  
Author(s):  
R. Muggli ◽  
H. R. Baumgartner

Aggregometer studies do not discriminate between platelet adhesion and platelet aggregation. Therefore, we prepared a homogenous collagen surface which could be exposed to whole blood in a perfusion chamber under controlled flow conditions.Artificial “vessel” segments were prepared by dipping glass rods into 20% gelatine and, after air-drying, cross-linking the gelatine in 2.5% glutaraldehyde. Segments of 1 cm length were then drawn on the rod of the perfusion chamber and coated with 300 μl of neutral salt soluble collagen (2.2 mg/ml). Surface coverage with collagen was virtually complete (96%–100%).Uncoated or collagen-coated gelatine segments were exposed to citrated rabbit blood for periods up to 40 min. Platelet-surface interaction was evaluated morphometrically. On uncoated segments surface coverage with platelets amounted to 31% and 50% after 10 min and 40 min (the corresponding ratios of contact/spread platelets were 2.6 and 1.5). Only 0.1% thrombi were found. On collagen-coated segments surface coverage with platelets amounted to 57% and 83% after 10 min and 40 min (the corresponding ratios of contact/ spread platelets were 0.1 and 0.0); platelet thrombi were found on 33% and 42% of the surface after 10 min and 40 min.Platelet adhesion and subsequent aggregation on the collagen-coated artificial surface is similar to that observed on α-chymotrypsin digested subendothelium. The results suggest that fibrillar collagen triggers rapid spreading on a surface, a reaction which is closely associated with the formation of platelet thrombi. The latter phenomenon is thought to be caused by the release of aggregating agents from the spreading platelets.


1979 ◽  
Author(s):  
V.T. Turitto ◽  
H.J. Weiss ◽  
H. R. Baumgartner

The interaction of platelets with subendothelium requires the transport of platelets to the vicinity of the surface, as well as the basic cell-surface reaction. Exposure of subendothelium to human citrated blood flowing in an annular perfusion chamber at wall shear rates (α) of 50-10,000 sec-1 indicates that a diffusion controlled (DC) transport regime exists below 650 sec- l in which platelet adhesion (C+S) was strongly dependent on α, and thrombus formation (T) was absent . Above 800 sec-1, an apparently reaction controlled (RC) regime predominates in which C+S was independent of α, and T increased in both extent and size. Variation of hematocrit (H) from 0-701. in the RC regime (2600 sec-1) lead to a steady increase of C+S with H, and an exponential increase in T as H increased from 30 to 70%. In the DC regime (200 sec-1) virtually no thrombi were formed for all H, and C+S increased as H increased to 40%; above 40%, C+S became independent of H. Thus, at low α (venous), the platelet-subendothelial reaction is controlled primarily by the arrival rate of platelets at the surface and the red cells increase this transport for H up to 40%. At high α (microcirculatory) , the platelet-vessel wall reactivity becomes more dominant and red cells increase the ability of platelets to attach to the subendothelium.


1987 ◽  
Author(s):  
Jaap J Zwaginga ◽  
Philip G de Groot ◽  
Jan J Sixma

Five patients with chronic renal insufficiency (CRI) presented a Simplate bleeding time of > 30’, two patients had normal bleeding times (< 9’)- Blood was collected before standard hemodialysis into 19 mM citrate (plasma concentration). It was circulated fojr 5’ through an annular perfusion chamber at a shear of 1300 s™1 over inverted umbilical artery segments. CRI blood’s hematocrit was raised to .3 by adding their own RBC’s. Control whole blood perfusates with Ht .3 were made by addition of their own plasma. After perfusion platelet adhesion on the artery was evaluated by microscope, corrected for platelet count of the perfusate and given as percentage surface covered. Control donors showed a 37.4 ± 5.2% coverage not different from ‘bleeding’ patients 38.0 ± 4.5% ’non bleeding’ CRI patients: 32.3 ± 3.9. We also perfused blood of three ’bleeding’ CRI patients in a new thrombus forming system. In a rectangular perfusion chamber (J Lab Clin Med 1983, 522-532) blood anticoagulated with low molecular weight heparin (Fragmin1, Kabi Vitrum) was circulated over tissue factor containing matrix of 43-phorbol 12-myristate 13-acetate perturbed endothelial cells. Locally formed thrombin stimulated platelet aggregation on this matrix. Aggregation was expressed as percentage of spread platelets covered with aggregates. Perfusions with the following perfusates were performed: whole blood of controls (WBc) and patients (WBp), CRI platelets with normal plasma and RBC’s (A), CRI plasma with normal platelets and RBC’s (B) and normal platelets with normal plasma and RBC’s (C).Platelet adhesion of CRI whole blood is not defective, aggregation, however, is. Uremic platelets in normal plasma may have an adhesion defect (A). The defective aggregation caused by uremic plasma (B) seems to be corrected for uremic platelets in normal plasma (A).


Sign in / Sign up

Export Citation Format

Share Document