Comparison Of The Effects Of Aspirin In Humans Ex Vivo In Platelet-Rich Plasma And Whole Blood

Author(s):  
Barbara Nunn

The effect of aspirin on human platelet function is usually assessed using platelet-rich plasma (PRP). Some preliminary results in vitro suggested that the effect of aspirin appears to be greater in PRP than whole blood. To explore this possibility further, a comparison of the effect of aspirin in humans ex vivo has been made taking measurements simultaneously in whole blood and PRP at 2 platelet concentrations. Blood samples (36ml) were drawn from 7 male volunteers after a light breakfast. Each took 300mg soluble aspirin and blood samples were drawn again 2 hours later. Blood was mixed with 0.1 volumes 129nM trisodium citrate. Some (30ml) was then centrifuged to prepare PRP and platelet -poor plasma (PPP) by standard techniques. Platelet concentration of some PRP was adjusted with PPP to equal that of the corresponding blood sample; the rest was adjusted to 350,000 per μl. Aggregation in response to collagen (Horm, Munich) was measured photometrically at 37°. Aggregation in 0.5ml aliquots of whole blood was measured after 4 min stirring with 154mM NaCl (control) or collagen at 37° as the fall in single platelet count determined using an Ultraflo- 100 whole blood platelet counter (Clay Adams). The concentrations of collagen producing a 50% maximal response (EC50) in PRP and blood were determined. Dose-ratios for each volunteer were calculated by dividing the EC50 obtained after aspirin by the corresponding value obtained before aspirin.The effect of aspirin was significantly (p<0.001) less in blood than PRP. Whether or not the results in whole blood more closely reflect the effect of aspirin in vivo remains to be determined.

1986 ◽  
Vol 56 (01) ◽  
pp. 045-049 ◽  
Author(s):  
A R Saniabadi ◽  
G D O Lowe ◽  
R Madhok ◽  
K Spowart ◽  
B Shaw ◽  
...  

SummaryBy a method of counting single platelets in diluted whole blood, platelet aggregates were quantified ex-vivo. Four groups: 20 thrombotic patients, 10 non-thrombotic patients, 10 healthy old controls and 10 healthy young controls were included in the study. Using a 19 gauge needle, with and without tubing, venous blood was taken into buffered EDTA, as a disaggregating agent and buffered EDTA-formalin, as the fixative. The amount of platelet aggregates quantified was affected by the quality of venepuncture or the rate of blood flow through the needle, but was unaffected by the presence of the tubing. There was no statistically significant difference between the four groups, in terms of the platelet aggregates quantified, but scanning electron microscopy revealed the presence of irreversible aggregates, composed of platelet red and white blood cells, in the blood of a greater number of thrombotic patients than non-thrombotic or healthy controls. Platelet aggregates were also quantified in aliquots of platelet rich plasma, and were found to be significantly greater than the corresponding values in whole blood. The difference appeared to be due to increased viscosity of the plasma, induced by the fixative which reduces platelet mobility during centrifugation. It is concluded that the platelet aggregates which disaggregate in bufffered EDTA may represent an artifact of blood collection; the irreversible aggregates are suspected to represent the in vivo circulating aggregates.


1997 ◽  
Vol 77 (05) ◽  
pp. 0920-0925 ◽  
Author(s):  
Bernd Pötzsch ◽  
Katharina Madlener ◽  
Christoph Seelig ◽  
Christian F Riess ◽  
Andreas Greinacher ◽  
...  

SummaryThe use of recombinant ® hirudin as an anticoagulant in performing extracorporeal circulation systems including cardiopulmonary bypass (CPB) devices requires a specific and easy to handle monitoring system. The usefulness of the celite-induced activated clotting time (ACT) and the activated partial thromboplastin time (APTT) for r-hirudin monitoring has been tested on ex vivo blood samples obtained from eight patients treated with r-hirudin during open heart surgery. The very poor relationship between the prolongation of the ACT and APTT values and the concentration of r-hirudin as measured using a chromogenic factor Ila assay indicates that both assays are not suitable to monitor r-hirudin anticoagulation. As an alternative approach a whole blood clotting assay based on the prothrombin-activating snake venom ecarin has been tested. In vitro experiments using r-hirudin- spiked whole blood samples showed a linear relationship between the concentration of hirudin added and the prolongation of the clotting times up to a concentration of r-hirudin of 4.0 µg/ml. Interassay coefficients (CV) of variation between 2.1% and 5.4% demonstrate the accuracy of the ecarin clotting time (ECT) assay. Differences in the interindividual responsiveness to r-hirudin were analyzed on r-hirudin- spiked blood samples obtained from 50 healthy blood donors. CV- values between 1.8% and 6% measured at r-hirudin concentrations between 0.5 and 4 µg/ml indicate remarkably slight differences in r-hirudin responsiveness. ECT assay results of the ex vivo blood samples linearily correlate (r = 0.79) to the concentration of r-hirudin. Moreover, assay results were not influenced by treatment with aprotinin or heparin. These findings together with the short measuring time with less than 120 seconds warrant the whole blood ECT to be a suitable assay for monitoring of r-hirudin anticoagulation in cardiac surgery.


1985 ◽  
Vol 54 (04) ◽  
pp. 799-803 ◽  
Author(s):  
José Luís Pérez-Requejo ◽  
Justo Aznar ◽  
M Teresa Santos ◽  
Juana Vallés

SummaryIt is shown that the supernatant of unstirred whole blood at 37° C, stimulated by 1 μg/ml of collagen for 10 sec, produces a rapid generation of pro and antiaggregatory compounds with a final proaggregatory activity which can be detected for more than 60 min on a platelet rich plasma (PRP) by turbidometric aggregometry. A reversible aggregation wave that we have called BASIC wave (for Blood Aggregation Stimulatory and Inhibitory Compounds) is recorded. The collagen stimulation of unstirred PRP produces a similar but smaller BASIC wave. BASIC’s intensity increases if erythrocytes are added to PRP but decreases if white blood cells are added instead. Aspirin abolishes “ex vivo” the ability of whole blood and PRP to generate BASIC waves and dipyridamole “in vitro” significantly reduces BASIC’s intensity in whole blood in every tested sample, but shows little effect in PRP.


1983 ◽  
Vol 50 (04) ◽  
pp. 852-856 ◽  
Author(s):  
P Gresele ◽  
C Zoja ◽  
H Deckmyn ◽  
J Arnout ◽  
J Vermylen ◽  
...  

SummaryDipyridamole possesses antithrombotic properties in the animal and in man but it does not inhibit platelet aggregation in plasma. We evaluated the effect of dipyridamole ex vivo and in vitro on platelet aggregation induced by collagen and adenosine- 5’-diphosphate (ADP) in human whole blood with an impedance aggregometer. Two hundred mg dipyridamole induced a significant inhibition of both ADP- and collagen-induced aggregation in human blood samples taken 2 hr after oral drug intake. Administration of the drug for four days, 400 mg/day, further increased the antiplatelet effect. A significant negative correlation was found between collagen-induced platelet aggregation in whole blood and dipyridamole levels in plasma (p <0.001). A statistically significant inhibition of both collagen (p <0.0025) and ADP-induced (p <0.005) platelet aggregation was also obtained by incubating whole blood in vitro for 2 min at 37° C with dipyridamole (3.9 μM). No such effects were seen in platelet-rich plasma, even after enrichment with leukocytes. Low-dose adenosine enhanced in vitro inhibition in whole blood.Our results demonstrate that dipyridamole impedes platelet aggregation in whole blood by an interaction with red blood cells, probably involving adenosine.


2019 ◽  
Vol 20 (11) ◽  
pp. 920-933 ◽  
Author(s):  
Lucía Gato-Calvo ◽  
Tamara Hermida-Gómez ◽  
Cristina R. Romero ◽  
Elena F. Burguera ◽  
Francisco J. Blanco

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. Objective: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2729 ◽  
Author(s):  
Melo ◽  
Luzo ◽  
Lana ◽  
Santana

Leukocyte and platelet-rich plasma (L-PRP) is an autologous product that when activated forms fibrin nanofibers, which are useful in regenerative medicine. As an important part of the preparation of L-PRP, the centrifugation parameters may affect the release of soluble factors that modulate the behavior of the cells in the nanofibers. In this study, we evaluated the influences of four different centrifugation conditions on the concentration of platelets and leukocytes in L-PRP and on the anabolic/catabolic balance of the nanofiber microenvironment. Human adipose-derived mesenchymal stem cells (h-AdMSCs) were seeded in the nanofibers, and their viability and growth were evaluated. L-PRPs prepared at 100× g and 100 + 400× g released higher levels of transforming growth factor (TGF)-β1 and platelet-derived growth factor (PDGF)-BB due to the increased platelet concentration, while inflammatory cytokines interleukin (IL)-8 and tumor necrosis factor (TNF)-α were more significantly released from L-PRPs prepared via two centrifugation steps (100 + 400× g and 800 + 400× g) due to the increased concentration of leukocytes. Our results showed that with the exception of nanofibers formed from L-PRP prepared at 800 + 400× g, all other microenvironments were favorable for h-AdMSC proliferation. Here, we present a reproducible protocol for the standardization of L-PRP and fibrin nanofibers useful in clinical practices with known platelet/leukocyte ratios and in vitro evaluations that may predict in vivo results.


2018 ◽  
Vol 11 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Claudia Eberl ◽  
Cornelia Speth ◽  
Ilse D. Jacobsen ◽  
Martin Hermann ◽  
Magdalena Hagleitner ◽  
...  

Over the last 2 decades, platelets have been recognized as versatile players of innate immunity. The interaction of platelets with fungal pathogens and subsequent processes may critically influence the clinical outcome of invasive mycoses. Since the role of platelets in Candida infections is poorly characterized and controversially discussed, we studied interactions of human platelets with yeast cells, (pseudo-)hyphae, biofilms and secretory products of human pathogenic Candida species applying platelet rich plasma and a whole blood model. Incubation of Candida with platelets resulted in moderate mutual interaction with some variation between different species. The rate of platelets binding to ­Candida (pseudo-) hyphae and candidal biofilm was comparably low as that to the yeast form. Candida-derived secretory products did not affect platelet activity – neither stimulatory nor inhibitory. The small subset of platelets that bound to Candida morphotypes was consequently activated. However, this did not result in reduced growth or viability of the different Candida species. A whole blood model simulating in vivo conditions confirmed platelet activation in the subpopulation of Candida-bound platelets. Thus, the inability of platelets to efficiently react on Candida presence might favor fungal survival in the blood and contribute to high morbidity of Candida sepsis.


2002 ◽  
Vol 103 (4) ◽  
pp. 433-440 ◽  
Author(s):  
Elijah W. MURIITHI ◽  
Philip R. BELCHER ◽  
Stephen P. DAY ◽  
Mubarak A. CHAUDHRY ◽  
Muriel J. CASLAKE ◽  
...  

Heparin, when administered to patients undergoing operations using cardiopulmonary bypass, induces plasma changes that gradually impair platelet macroaggregation, but heparinization of whole blood in vitro does not have this effect. The plasma changes induced by heparin in vivo continue to progress in whole blood ex vivo. Heparin releases several endothelial proteins, including lipoprotein lipase, hepatic lipase, platelet factor-4 and superoxide dismutase. These enzymes, which remain active in plasma ex vivo, may impair platelet macroaggregation after in vivo heparinization and during cardiopulmonary bypass. In the present study, proteins were added in vitro to hirudin (200units·ml-1)-anticoagulated blood from healthy volunteers, and the platelet macroaggregatory responses to ex vivo stimulation with collagen (0.6μg·ml-1) were assessed by whole-blood impedance aggregometry. Over a 4h period, human lipoprotein lipase and human hepatic lipase reduced the platelet macroaggregatory response from 17.0±2.3 to 1.5±1.3 and 1.2±0.6Ω respectively (means±S.D.) (both P<0.01; n = 6). Other lipoprotein lipases also impaired platelet macroaggregation, but platelet factor-4 and superoxide dismutase did not. Platelet macroaggregation showed an inverse linear correlation with plasma concentrations of non-esterified fatty acids (r2 = 0.69; two-sided P<0.0001; n = 8), suggesting that heparin-induced lipolysis inhibits platelet macroaggregation. Lipoprotein degradation products may cause this inhibition by interfering with eicosanoids and other lipid mediators of metabolism.


2011 ◽  
Vol 127 (6) ◽  
pp. 565-570 ◽  
Author(s):  
Chae-Wook Kim ◽  
Jun-Won Yun ◽  
Il-Hong Bae ◽  
Yang-Hui Park ◽  
Yeon Su Jeong ◽  
...  
Keyword(s):  

1999 ◽  
Vol 82 (09) ◽  
pp. 1182-1187 ◽  
Author(s):  
Ahmed Hasan ◽  
Sam Rebello ◽  
Edward Smith ◽  
Sujata Srikanth ◽  
Steven Werns ◽  
...  

SummaryThrombostatin (RPPGF), an angiotensin converting enzyme metabolite of bradykinin, is an inhibitor of α-thrombin’s ability to activate platelets. We examined the in vivo pharmacokinetics and pharmacodynamics of thrombostatin in rabbits and its ability to inhibit coronary thrombosis induced by electrolytic injury in dogs. Plasma half-life of thrombostatin had a t1/2α of 2.6 min and a t1/2β of 24 min in rabbits. Ligating the renal arteries did not prolong clearance (t1/2α = 2.4 min; t1/2β = 12 min). Thrombostatin produced a prolonged in vivo antiplatelet effect. At 30 min after a single intravenous administration in rabbits, thrombostatin’s plasma concentration was <8.7 μM (5 μg/ml). However, ex vivo 20 and 40 nM γ-thrombin-induced platelet aggregation of these rabbits’ platelets was inhibited 40% for 2.75 and 1 h, respectively. In vitro, flow cytometry studies revealed that thrombostatin specifically bound to human platelets and washed human platelets treated with thrombostatin were less responsive to γ-thrombin than control platelets. Using electrolytic injury to induce coronary artery thrombosis, dogs treated with thrombostatin, aspirin, or combined thrombostatin and aspirin occluded in 62 ± 25 (mean ± SD), 62 ± 36, or 89 ± 32 min versus untreated animals which occluded at 39 ± 27 min, (p <0.01, p <0.01 and p <0.001, respectively). These studies show that thrombostatin binds to platelets and can delay coronary occlusion in vivo. Abbreviations: RPPGF: thrombostatin; PAR1: protease activated receptor 1, the first cloned thrombin receptor; PRP: platelet-rich plasma; PPP: plateletpoor plasma; LCX: left circumflex coronary artery; APTT: activated partial thromboplastin time; PT: prothrombin time


Sign in / Sign up

Export Citation Format

Share Document