A Critical Investigation into the Existence of Circulating Platelet Aggregates

1986 ◽  
Vol 56 (01) ◽  
pp. 045-049 ◽  
Author(s):  
A R Saniabadi ◽  
G D O Lowe ◽  
R Madhok ◽  
K Spowart ◽  
B Shaw ◽  
...  

SummaryBy a method of counting single platelets in diluted whole blood, platelet aggregates were quantified ex-vivo. Four groups: 20 thrombotic patients, 10 non-thrombotic patients, 10 healthy old controls and 10 healthy young controls were included in the study. Using a 19 gauge needle, with and without tubing, venous blood was taken into buffered EDTA, as a disaggregating agent and buffered EDTA-formalin, as the fixative. The amount of platelet aggregates quantified was affected by the quality of venepuncture or the rate of blood flow through the needle, but was unaffected by the presence of the tubing. There was no statistically significant difference between the four groups, in terms of the platelet aggregates quantified, but scanning electron microscopy revealed the presence of irreversible aggregates, composed of platelet red and white blood cells, in the blood of a greater number of thrombotic patients than non-thrombotic or healthy controls. Platelet aggregates were also quantified in aliquots of platelet rich plasma, and were found to be significantly greater than the corresponding values in whole blood. The difference appeared to be due to increased viscosity of the plasma, induced by the fixative which reduces platelet mobility during centrifugation. It is concluded that the platelet aggregates which disaggregate in bufffered EDTA may represent an artifact of blood collection; the irreversible aggregates are suspected to represent the in vivo circulating aggregates.

Author(s):  
Barbara Nunn

The effect of aspirin on human platelet function is usually assessed using platelet-rich plasma (PRP). Some preliminary results in vitro suggested that the effect of aspirin appears to be greater in PRP than whole blood. To explore this possibility further, a comparison of the effect of aspirin in humans ex vivo has been made taking measurements simultaneously in whole blood and PRP at 2 platelet concentrations. Blood samples (36ml) were drawn from 7 male volunteers after a light breakfast. Each took 300mg soluble aspirin and blood samples were drawn again 2 hours later. Blood was mixed with 0.1 volumes 129nM trisodium citrate. Some (30ml) was then centrifuged to prepare PRP and platelet -poor plasma (PPP) by standard techniques. Platelet concentration of some PRP was adjusted with PPP to equal that of the corresponding blood sample; the rest was adjusted to 350,000 per μl. Aggregation in response to collagen (Horm, Munich) was measured photometrically at 37°. Aggregation in 0.5ml aliquots of whole blood was measured after 4 min stirring with 154mM NaCl (control) or collagen at 37° as the fall in single platelet count determined using an Ultraflo- 100 whole blood platelet counter (Clay Adams). The concentrations of collagen producing a 50% maximal response (EC50) in PRP and blood were determined. Dose-ratios for each volunteer were calculated by dividing the EC50 obtained after aspirin by the corresponding value obtained before aspirin.The effect of aspirin was significantly (p<0.001) less in blood than PRP. Whether or not the results in whole blood more closely reflect the effect of aspirin in vivo remains to be determined.


1985 ◽  
Vol 54 (04) ◽  
pp. 799-803 ◽  
Author(s):  
José Luís Pérez-Requejo ◽  
Justo Aznar ◽  
M Teresa Santos ◽  
Juana Vallés

SummaryIt is shown that the supernatant of unstirred whole blood at 37° C, stimulated by 1 μg/ml of collagen for 10 sec, produces a rapid generation of pro and antiaggregatory compounds with a final proaggregatory activity which can be detected for more than 60 min on a platelet rich plasma (PRP) by turbidometric aggregometry. A reversible aggregation wave that we have called BASIC wave (for Blood Aggregation Stimulatory and Inhibitory Compounds) is recorded. The collagen stimulation of unstirred PRP produces a similar but smaller BASIC wave. BASIC’s intensity increases if erythrocytes are added to PRP but decreases if white blood cells are added instead. Aspirin abolishes “ex vivo” the ability of whole blood and PRP to generate BASIC waves and dipyridamole “in vitro” significantly reduces BASIC’s intensity in whole blood in every tested sample, but shows little effect in PRP.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 205-209 ◽  
Author(s):  
FH Kohanna ◽  
MH Smith ◽  
EW Salzman

Reports of circulating platelet aggregates (ie, microemboli) in thromboembolism and other vascular disorders are based on a method (Wu and Hoak , 1974) in which venous blood is collected via scalp vein needle and tubing into either formaldehyde, which fixes aggregates, or EDTA, which disperses them. The ratio of platelet counts in platelet- rich plasma (PRP) from the two blood samples after centrifugation is interpreted as a measure of platelet aggregates in the circulation in vivo. We compared this standard Wu and Hoak technique with a modified one, in which blood was drawn directly into a syringe, and with a third method that avoided centrifugation by counting single platelets in whole blood. Both modified techniques could detect aggregates generated in vitro with adenosine diphosphate (ADP). In 12 normal subjects, the three methods were equivalent, but in 37 patients with thromboembolic disorders, the standard Wu and Hoak method gave a lower ratio than the other methods. Similar results were found in a subset of eight patients with myocardial infarction. Heparin treatment of patients did not influence the results. The data suggest that formation of platelet aggregates occurred during venipuncture. Platelets may be hyperactive in patients with thromboembolic disease and may form aggregates in vitro during collection, but the concept of chronic microembolism in such patients should be reassessed.


1967 ◽  
Vol 17 (01/02) ◽  
pp. 078-098 ◽  
Author(s):  
M. I Barnhart ◽  
D. C Cress ◽  
R. L Henry ◽  
J. M Riddle

SummaryBreakdown products of fibrinogen and fibrin can play a role in hemostasis and also may be of consequence in thrombosis. β2 fibrinogen derivative D is an electropositive terminal proteolysis product of fibrinolysis which has the ability to aggregate platelets. The normal plasma concentration of such nonclottable fibrinogen relatives is 0.2 mg/ml. During fibrinolysis this concentration may reach 5 mg/ml plasma. Addition of β 2 fibrinogen D (raising the plasma concentration 0.1 to 5 mg/ml) either in vivo or in vitro induced platelet aggregations. Moreover, alterations in platelet morphology occurred which were obvious by electron microscopy.Platelet depletion was a consistent response to the infusion of purified β2 fibrinogen D (8 to 55 mg/kg body weight) into dogs. Circulating platelets decreased as much as 85% but were only temporarily aggregated and reappeared in the circulation within 1 to 5 hrs. Small platelet aggregates circulated while large aggregates were trapped in the microcirculation. Thrombin was not responsible for the platelet aggregations as neither prothrombin nor clottable fibrinogen were changed significantly. The transient nature and morphological features of the platelet response according to microscopic criteria were prominent during and after infusion of β2 fibrinogen D.In vitro studies included 3 systems; washed platelets, platelet rich plasma and whole blood. Positive results were obtained with all, but platelets in whole blood were most responsive. The magnitude of platelet aggregation and morphology correlated with the concentration of β2 fibrinogen D. Platelet aggregation induced by ADP (10~5 mg/ml) was compared with that induced by β2 fibrinogen D (0.09 to 0.72 mg/ml). With either reagent aggregates were of dendritic forms. Combination of the 2 reagents was additive but did not further change the morphology. Additional factors seem necessary for development of viscous metamorphosis.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Marko Poglitsch ◽  
Manuel Haschke ◽  
Andrea Stoller ◽  
Cornelia Schwager ◽  
Oliver Domenig ◽  
...  

Angiotensin concentrations are affected by multiple molecular components including receptors and enzymes which might be either dissolved in plasma or attached to blood cells or endothelial surfaces throughout the body, giving rise to a concentration determining local enzymatic environment. This environment substantially changes during blood collection leading to a rapid and fundamental shift in angiotensin peptide levels. Therefore, a clearly defined and properly controlled sample stabilization procedure is essential for the accurate measurement of in vivo angiotensin peptide levels. Surprisingly, standard samples collected by anti-coagulation with heparin can be used for analyzing the human RAS under well-defined steady-state conditions, allowing RAS-Fingerprint based conclusions about the activities of circulating enzymes involved in angiotensin metabolism. The mass spectrometry based measurements of in vivo RAS-Fingerprints (immediate sample stabilization) or heparin plasma derived ex vivo RAS-Fingerprints in plasma or whole blood provide unique insights into the physiology of the human RAS. RAS-Fingerprinting provides an integrated view about the activity of the enzymes involved in angiotensin metabolism in a plasma sample and therefore represents a powerful tool for characterization of the patient specific “Biochemical Hardware”, which determines angiotensin peptide levels in vivo. The assay is compatible with undiluted plasma and whole blood and can be further applied to long-term stored frozen plasma samples. The utilization of RAS-Fingerprinting in clinical studies will substantially enhance our understanding of the human RAS and could lead to the development of personalized approaches for the treatment and prevention of cardiovascular diseases in the near future.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 718-718
Author(s):  
Rachael P. Jackman ◽  
Marcus O. Muench ◽  
John W. Heitman ◽  
Susanne Marschner ◽  
Raymond P. Goodrich ◽  
...  

Abstract Abstract 718 Introduction: The presence of donor white blood cells (WBC) in transfused blood products can induce alloimmunization, and reducing or eliminating this response may prove to be of clinical benefit. The use of a pathogen reduction method based on UV light illumination in the presence of riboflavin has been shown to induce changes in WBCs that result in a failure to bind to, or induce proliferation of allogeneic PBMCs in vitro. In addition, a study in rats has shown a reduction in alloimmunization in vivo using this treatment. Transfusion of cells illuminated with UV light at other doses without riboflavin has been shown to induce some degree of tolerance with a reduced antibody response to subsequent allogeneic transfusions. We sought to assess both the degree of alloimmunization in mice given pathogen reduced versus untreated allogeneic platelets, as well as determine if cells from mice given pathogen reduced platelets exhibited signs of tolerance ex vivo. Methods: Peripheral blood was collected from C57Bl/6 and Balb/cJ mice into CPDA-1, and platelet rich plasma (PRP) was prepared by gentle centrifugation. WBCs were isolated from the remainder of the blood and were added back to a portion of the PRP to generate either WBC-enriched or WBC-poor PRP. These products were either left untreated or pathogen reduced using the Mirasol pathogen reduction technology system, which uses a combination of riboflavin and UV illumination. These products were transfused via tail vein injection into Balb/cJ mice. Two weeks after transfusion the treated mice were sacrificed, and peripheral blood and spleens were collected. Serum levels of circulating alloantibodies were measured by flow cytometry. Splenocytes were cultured for 48 hours in the presence or absence of C57Bl/6 splenocytes, and levels of secreted cytokines were measured in culture supernatants using multiplexing techniques. Groups were compared using one-way ANOVA with Tukey's multiple comparison post-test, α=0.05. Results: Mice given allogeneic PRP transfusions had significantly elevated levels of alloantibodies compared with non-transfused control mice, whereas mice given syngeneic PRP or pathogen reduced PRP did not. Mice given either the WBC-enriched PRP or WBC-poor PRP generated alloantibodies, though higher levels of antibodies were observed with WBC-enriched PRP. Levels of IFN-γ, TNF-α, IL-10 and GM-CSF were significantly higher following secondary allogeneic challenge of cells from mice given untreated allogeneic PRP compared with those given no transfusion or syngeneic PRP, but not with those given pathogen reduced PRP. Levels of IL-1β, IL-4, IL-5, IL-6, IL-12(p70), and IL-13 were significantly reduced following secondary allogeneic challenge of cells from mice given pathogen reduced allogeneic PRP compared with those given no transfusion or syngeneic PRP. Conclusions: Treatment of allogeneic PRP with riboflavin and UV light prior to transfusion blocks alloimmunization in mice. Furthermore, secondary cytokine responses to allogeneic cells ex vivo are reduced, in some cases bellow the levels observed in cells from mice without prior exposure, suggesting induction of tolerance. Disclosures: Marschner: CaridianBCT Biotechnologies: Employment. Goodrich:CaridianBCT Biotechnologies: Employment. Norris:CaridianBCT Biotechnologies: Consultancy, Research Funding.


1987 ◽  
Author(s):  
E Tremoli ◽  
P Maderna ◽  
S Colli ◽  
L Mannucci ◽  
C R Sirtori ◽  
...  

To evaluate whether the activity of Iloprost, a chemically stable prostacyclin analog, on platelet aggregation could be potentiated by aspirin (ASA), in vitro and ex vivo studies in human volunteers were performed. In vitro studies were carried out in human platelet rich plasma (PRP) incubated with different concentrations of ASA (25-150 μM). For ex vivo studies Iloprost (0.5 ng.Kg−1.min−1 for 30 min) was given intravenously to healthy volunteers. After 20 hour wash out a single 50 mg ASA dose was given to the same subjects. Two hours after ASA intake, a second infusion of Iloprost was carried out. Blood was collected at appropriate time intervals thereafter. Platelet aggregation and thromboxane B2 (TXB2) formation were determined in collagen stimulated PRP. ASA, in vitro , dose dependently reduced the concentrations oF Iloprost required to achieve 50% inhibition of platelet aggregation (IC50) in PRP stimulated by 1 g/ml collagen. Also, the IC50S for Iloprost were significantly reduced (p<0.01) in PRP of subjects who ingested ASA two hours before blood collection. Iloprost infusion (0.5 ng.Kg−1.min−1 for 30 min) only minimally affected the concentrations of collagen eliciting 50% aggregation (AC50) and was ineffective on TXB2 synthesis. ASA, administered after a 20 hour wash out period did not significantly affect the AC s for collagen, whereas it inhibited TXB2 synthesis by more than 50%. The mean AC50 for collagen, evaluated at the end of Iloprost infusion in PRP of subjects who previously ingested ASA, was signicantly greater than that evaluated after the two single treatments. No significant changes in hemodynamic and ECG parameters were detected during the study. These findings, indicating an in vivo potentiating effect of ASA on the antiaggregatory activity of Iloprost, observed at doses of Iloprost with no effect on hemodynamic parameters, may be of relevance for the design of treatment schedules aimed to the selective inhibition of platelet aggregation.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 205-209 ◽  
Author(s):  
FH Kohanna ◽  
MH Smith ◽  
EW Salzman

Abstract Reports of circulating platelet aggregates (ie, microemboli) in thromboembolism and other vascular disorders are based on a method (Wu and Hoak , 1974) in which venous blood is collected via scalp vein needle and tubing into either formaldehyde, which fixes aggregates, or EDTA, which disperses them. The ratio of platelet counts in platelet- rich plasma (PRP) from the two blood samples after centrifugation is interpreted as a measure of platelet aggregates in the circulation in vivo. We compared this standard Wu and Hoak technique with a modified one, in which blood was drawn directly into a syringe, and with a third method that avoided centrifugation by counting single platelets in whole blood. Both modified techniques could detect aggregates generated in vitro with adenosine diphosphate (ADP). In 12 normal subjects, the three methods were equivalent, but in 37 patients with thromboembolic disorders, the standard Wu and Hoak method gave a lower ratio than the other methods. Similar results were found in a subset of eight patients with myocardial infarction. Heparin treatment of patients did not influence the results. The data suggest that formation of platelet aggregates occurred during venipuncture. Platelets may be hyperactive in patients with thromboembolic disease and may form aggregates in vitro during collection, but the concept of chronic microembolism in such patients should be reassessed.


1979 ◽  
Vol 41 (03) ◽  
pp. 465-474 ◽  
Author(s):  
Marcia R Stelzer ◽  
Thomas S Burns ◽  
Robert N Saunders

SummaryThe relationship between the effects of suloctidil in vivo as an antiplatelet agent and in vitro as a modifier of platelet serotonin (5-HT) parameters was investigated. Suloctidil was found to be effective in reducing platelet aggregates formation in the retired breeder rat as determined using the platelet aggregate ratio method (PAR) with an ED50 of 16.1 mg/kg 24 hours post administration. In contrast to the hypothesis that 5-HT depletion is involved in the anti-aggregatory mechanism of suloctidil, no correlation was found between platelet 5- HT content and this antiplatelet activity. Reduction of platelet 5-HT content required multiple injections of high doses (100 mg/kg/day) of suloctidil. Suloctidil administration for 8 days at 100 mg/kg/day, which lowered platelet 5-HT content by 50%, resulted in no permanent effect on ex vivo platelet 5-HT uptake or thrombin-induced release, nor alteration in the plasma 5-HT level. However, these platelets exhibited a short-lived, significant increase in percent leakage of 5-HT after 30 minutes of incubation. Therefore, suloctidil treatment at high doses may with time result in platelet 5-HT depletion, however this effect is probably not related to the primary anti-aggregatory activity of the drug.


1985 ◽  
Vol 54 (03) ◽  
pp. 612-616 ◽  
Author(s):  
A J Carter ◽  
S Heptinstall

SummaryThe platelet aggregation that occurred in whole blood in response to several aggregating agents (collagen, arachidonic acid, adenosine diphosphate, adrenaline and thrombin) was measured using an Ultra-Flo 100 Whole Blood Platelet Counter. The amounts of thromboxane B2 produced were measured by radioimmunoassay. The effects of various inhibitors of thromboxane synthesis and the effects of apyrase, an enzyme that destroys adenosine diphosphate, were determined.Platelet aggregation was always accompanied by the production of thromboxane B2, and the amounts produced depended on the nature and concentration of the aggregating agent used. The various inhibitors of thromboxane synthesis - aspirin and flurbiprofen (cyclo-oxygenase inhibitors), BW755C (a cyclo-oxygenase and lipoxygenase inhibitor) and dazoxiben (a selective thromboxane synthase inhibitor) - did not markedly inhibit aggregation. Results obtained using apyrase showed that adenosine diphosphate contributed to the aggregation process, and that its role must be acknowledged when devising means of inhibiting platelet aggregation in vivo.


Sign in / Sign up

Export Citation Format

Share Document