Immune surveillance of the central nervous system in health and disease – therapeutic intervention by natural products

Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
O Ullrich
2020 ◽  
Vol 38 (1) ◽  
pp. 597-620 ◽  
Author(s):  
Kalil Alves de Lima ◽  
Justin Rustenhoven ◽  
Jonathan Kipnis

Neuroimmunology, albeit a relatively established discipline, has recently sparked numerous exciting findings on microglia, the resident macrophages of the central nervous system (CNS). This review addresses meningeal immunity, a less-studied aspect of neuroimmune interactions. The meninges, a triple layer of membranes—the pia mater, arachnoid mater, and dura mater—surround the CNS, encompassing the cerebrospinal fluid produced by the choroid plexus epithelium. Unlike the adjacent brain parenchyma, the meninges contain a wide repertoire of immune cells. These constitute meningeal immunity, which is primarily concerned with immune surveillance of the CNS, and—according to recent evidence—also participates in postinjury CNS recovery, chronic neurodegenerative conditions, and even higher brain function. Meningeal immunity has recently come under the spotlight owing to the characterization of meningeal lymphatic vessels draining the CNS. Here, we review the current state of our understanding of meningeal immunity and its effects on healthy and diseased brains.


2018 ◽  
Vol 16 (10) ◽  
pp. 1080-1089 ◽  
Author(s):  
Pasqualina Lagana ◽  
Luca Soraci ◽  
Maria Elsa Gambuzza ◽  
Giuseppe Mancuso ◽  
Santi Antonino Delia

2012 ◽  
Vol 15 (8) ◽  
pp. 1096-1101 ◽  
Author(s):  
Shalina S Ousman ◽  
Paul Kubes

2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Alejandro Quintero-Villegas ◽  
Sergio Iván Valdés-Ferrer

AbstractIn mammalians, serotonin (5-HT) has critical roles in the central nervous system (CNS), including mood stability, pain tolerance, or sleep patterns. However, the vast majority of serotonin is produced by intestinal enterochromaffin cells of the gastrointestinal tract and circulating blood platelets, also acting outside of the CNS. Serotonin effects are mediated through its interaction with 5-HT receptors (5-HTRs), a superfamily with a repertoire of at least fourteen well-characterized members. 5-HT7 receptors are the last 5-HTR member to be identified, with well-defined functions in the nervous, gastrointestinal, and vascular systems. The effects of serotonin on the immune response are less well understood. Mast cells are known to produce serotonin, while T cells, dendritic cells, monocytes, macrophages and microglia express 5-HT7 receptor. Here, we review the known roles of 5-HT7 receptors in the immune system, as well as their potential therapeutic implication in inflammatory and immune-mediated disorders.


Physiology ◽  
2003 ◽  
Vol 18 (3) ◽  
pp. 109-114 ◽  
Author(s):  
Anthony R. Hobson ◽  
Qasim Aziz

To understand the pathophysiology of anomalous pain in functional gastrointestinal disorders, we must increase our understanding of how the central nervous system processes visceral pain. Over the past decade, novel application of functional brain imaging and electrophysiological techniques has given us the opportunity to study these processes in humans, and this review summarizes the current body of knowledge.


Sign in / Sign up

Export Citation Format

Share Document