Storm Events-Oriented Design Method for Urban Storm Sewer System

ICPTT 2009 ◽  
2009 ◽  
Author(s):  
Xingpo Liu
2013 ◽  
Vol 777 ◽  
pp. 430-433
Author(s):  
Xing Po Liu

In order to cope with urban flooding, water scarcity and rainfall-runoff pollution comprehensively, a conceptual tank model of urban storm water system is proposed. Tank model is a multi-layer, multi-objective model, so design of urban storm water system is more complex than that of urban storm sewer system. Some principles of design of urban storm water system are discussed, such as Low Impact Development, Smart storm water management, and so on.


2016 ◽  
Author(s):  
◽  
Windy Beck ◽  

In 1999 the City of Portland (City) began to require that stormwater management facilities (SMF) be built when private property is newly developed or redeveloped (City Code Chapter 17.38). Proper maintenance and upkeep of SMFs is essential to ensuring they function appropriately. The City’s Maintenance Inspection Program (MIP) is tasked with inspecting stormwater management facilities on private properties in order to ensure that they are being properly operated and maintained and to meet provisions of the City’s NPDES Municipal Separated Storm Sewer System (MS4) permit. Greenroofs are one type of SMF that are installed to satisfy this requirement. Understanding the long-term maintenance needs of a greenroof is essential to reaching MIP goals established by City Code and the MS4 permit. Data collection occurred between November 2011 and May 2013 at private properties in Portland, Oregon during routine maintenance inspections of stormwater management facilities for the City’s Maintenance Inspection Program (MIP).


2009 ◽  
Vol 44 (2) ◽  
pp. 141-150 ◽  
Author(s):  
James Y. Li ◽  
Ching Lo ◽  
Peter D. Luciani ◽  
Angelune Des Lauriers ◽  
Kevin Sze ◽  
...  

Abstract To address vector-borne West Nile virus in Canada, chemical larvicides (methoprene) are applied to storm sewer system catch basins (CBs) to control mosquitoes. This study assessed the fate and transport of methoprene in such systems over time relative to precipitation. Rainfall and methoprene concentration patterns revealed the effect of dilution, dissolution, and flushing of the larvicide. In the summer and fall of 2003 to 2005, field monitoring studies were conducted in Toronto, Ontario on two CBs, each treated with a control dose of methoprene, supplied in pellet or ingot formulation. Furthermore, in 2005, concentrations at the storm sewer outfall were measured during nine rainfall events. Based on daily monitoring, findings indicate that (1) the methoprene concentration at the CBs fell below the minimum lethal concentration or LC50 one or two weeks after treatment, and remained below LC50 concentrations over 70% of the time; (2) rainfall flushed methoprene from the CBs to the storm sewer outfall at concentrations higher than the levels specified by Ministry of Environment, which may cause ecosystem damage; (3) based on the number of cycles per diem within each CB in each study period, there was no conclusive pattern in the flushing susceptibility of pellets versus ingots; (4) the mean concentration of methoprene increased with reduced CB sump volume; (5) less total precipitation resulted in higher average methoprene concentrations and a higher number of days above the LC50 based on ingot-dosed CBs; (6) counter-intuitive to (4) and (5), larger sump water volumes and greater rainfall resulted in lower mean concentrations and fewer days above the LC50; and (7) a single ingot dosage was comparable in performance to a three pellet dosage.


1990 ◽  
Vol 22 (10-11) ◽  
pp. 155-162 ◽  
Author(s):  
H. F. Gast ◽  
R. E. M. Suykerbuyk ◽  
R. M. M. Roijackers

From 1985 to 1987, effects of sewer discharges on communities of phyto- and Zooplankton in receiving waters have been studied. Locations all over The Netherlands have been selected. The results were related to the type of sewer system, the discharges and the characteristics of the receiving water. Results were compared with those from samples taken from a corresponding water not influenced by sewer discharges, the reference water. Often either phyto- or Zooplankton communities could be used succesfully to describe the short-and medium-term effects of the discharges on the quality of the involved habitats. Plankton communities could also indicate permanent effects due to higher saprobic levels in the receiving water compared to the reference water: an obvious result of urban storm water discharges. In small and medium-sized stagnant waters, particularly in the immediate vicinity of the overflows, effects on plankton communities were more pronounced compared to large and running waters. Combined sewer system overflows (CSO) often proved to affect plankton communities more severely than separate sewer system discharges (SSD), except for some locations in industrial areas.


1994 ◽  
Vol 30 (1) ◽  
pp. 107-115 ◽  
Author(s):  
R. Crabtree ◽  
H. Garsdal ◽  
R. Gent ◽  
O. Mark ◽  
J. Dórge

Recent research into the behaviour of sediments and associated pollutants in sewers has formed the foundation for a dynamic pollutograph-based sewer flow quality simulation model called MOUSETRAP. This is a new component to the MOUSE sewer system hydraulic modelling package. MOUSETRAP has been developed by an international consortium of sewer model developers and users to predict short term variations in sewer flow quality and sediment transport in response to storm events. MOUSETRAP is composed of a series of modules to represent: the quality of surface run off; sediment and pollutant transport, erosion and deposition within pipes; and the biological and chemical processes within the sewer system. By representing the current understanding of real sewer sediments, this new tool gives the user the capability to simulate storm event pollutographs incorporating first foul flush phenomena. The paper describes the basis of the new MOUSETRAP modules. Results of initial theoretical testing and pilot study applications are presented to illustrate the model's capabilities and potential for use in the management of urban wastewater discharges.


Sign in / Sign up

Export Citation Format

Share Document