A deep‐level spectroscopic technique for determining capture cross‐section activation energy of Si‐relatedDXcenters in AlxGa1−xAs

1994 ◽  
Vol 75 (12) ◽  
pp. 8243-8245 ◽  
Author(s):  
Subhasis Ghosh ◽  
Vikram Kumar
2021 ◽  
Vol 2103 (1) ◽  
pp. 012088
Author(s):  
A A Maksimova ◽  
A I Baranov ◽  
A V Uvarov ◽  
D A Kudryashov ◽  
A S Gudovskikh

Abstract In this work the properties of the BP/Si heterojunction interface were investigated by capacitance methods, the deep levels transient spectroscopy method and admittance spectroscopy. Admittance spectroscopy did not detect any defects, but the deep level transient spectroscopy showed response with activation energy of 0.33 eV and capture cross-section σn=(1-10)·10-19 cm2 and defect concentration (NT) is in the order of 1013 cm-3. This defect level is a trap for electron with position of 0.33 eV below the conduction band in region near the BP/Si interface.


2021 ◽  
Vol 21 (3) ◽  
pp. 1904-1908
Author(s):  
Woo-Young Son ◽  
Jeong Hyun Moon ◽  
Wook Bahng ◽  
Sang-Mo Koo

We investigated the effect of a sacrificial AlN layer on the deep energy level states of 4H-SiC surface. The samples with and without AlN layer have been annealed at 1300 °C for 30 minutes duration using a tube furnace. After annealing the samples, the changes of the carbon vacancy (VC) related Z1/2 defect characteristics were analyzed by deep level transient spectroscopy. The trap energy associated with double negative acceptor (VC(2-/0)) appears at ˜0.7 eV and was reduced from ˜0.687 to ˜0.582 eV in the sacrificial AlN layer samples. In addition, the capture cross section was significantly improved from ˜2.1×10-14 to ˜3.8×10−16 cm−2 and the trap concentration was reduced by approximately 40 times.


2017 ◽  
Vol 897 ◽  
pp. 279-282 ◽  
Author(s):  
Hussein M. Ayedh ◽  
Maurizio Puzzanghera ◽  
Bengt Gunnar Svensson ◽  
Roberta Nipoti

A vertical 4H-SiC p-i-n diode with 2×1020cm-3 Al+ implanted emitter and 1950°C/5min post implantation annealing has been characterized by deep level transient spectroscopy (DLTS). Majority (electron) and minority (hole) carrier traps have been found. Electron traps with a homogeneous depth profile, are positioned at 0.16, 0.67 and 1.5 eV below the minimum edge of the conduction band, and have 3×10-15, 1.7×1014, and 1.8×10-14 cm2 capture cross section, respectively. A hole trap decreasing in intensity with decreasing pulse voltage occurs at 0.35 eV above the maximum edge of the valence band with 1×1013 cm2 apparent capture cross section. The highest density is observed for the refractory 0.67 eV electron trap that is due to the double negative acceptor states of the carbon vacancy.


2010 ◽  
Vol 645-648 ◽  
pp. 499-502 ◽  
Author(s):  
Alberto F. Basile ◽  
John Rozen ◽  
X.D. Chen ◽  
Sarit Dhar ◽  
John R. Williams ◽  
...  

The electrical properties of the SiC/SiO2 interface resulting from oxidation of the n-type 6H-SiC polytype were studied by hi-lo CV, temperature dependent CV and constant capacitance deep level transient spectroscopy (CCDLTS) techniques. Several trap species differing in energy and capture cross section were identified. A trap distribution at 0.5 eV below the 6H-SiC conduction band energy and a shallower density of states in both the 6H and 4H polytyes are passivated by post-oxidation NO annealing. However, other ultra-shallow and deeper defect distributions remain after nitridation. The latter may originate from semiconductor traps.


1991 ◽  
Vol 240 ◽  
Author(s):  
G. S. Solomon ◽  
G. Roos ◽  
E. Muñoz-Merino ◽  
J. S. Harris

ABSTRACTThe effect of planar Si doping on the DX center in AlGaAs is investigated using Capacitance-Voltage and Deep Level Transient Spectroscopy techniques. We observe an increase of approximately six orders of magnitude in the DX center capture cross section in Al.26Ga.74As with planar doped Si spikes of 2×1012cm−2 as compared to conventional homogeneous Si doped Al.26Ga.74As. We also observe a small increase in the DX activation energy which was initiated at a lower planar doping of 4×1011 cm−2 and remained constant for the higher planar doping case. We believe the DX center concentration is not changed by the planar doping levels studied here. A model is proposed to explain the increase in capture cross section based on a biaxial stress state in the planar doped AlGaAs region.


1999 ◽  
Vol 75 (2) ◽  
pp. 277-279 ◽  
Author(s):  
M. A. Lourenço ◽  
Wai Lek Ng ◽  
K. P. Homewood ◽  
K. Durose

Sign in / Sign up

Export Citation Format

Share Document