Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA-intercalator interactions

2011 ◽  
Vol 135 (17) ◽  
pp. 174107 ◽  
Author(s):  
Edward G. Hohenstein ◽  
Robert M. Parrish ◽  
C. David Sherrill ◽  
Justin M. Turney ◽  
Henry F. Schaefer
2020 ◽  
Vol 501 (1) ◽  
pp. L71-L75
Author(s):  
Cornelius Rampf ◽  
Oliver Hahn

ABSTRACT Perturbation theory is an indispensable tool for studying the cosmic large-scale structure, and establishing its limits is therefore of utmost importance. One crucial limitation of perturbation theory is shell-crossing, which is the instance when cold-dark-matter trajectories intersect for the first time. We investigate Lagrangian perturbation theory (LPT) at very high orders in the vicinity of the first shell-crossing for random initial data in a realistic three-dimensional Universe. For this, we have numerically implemented the all-order recursion relations for the matter trajectories, from which the convergence of the LPT series at shell-crossing is established. Convergence studies performed at large orders reveal the nature of the convergence-limiting singularities. These singularities are not the well-known density singularities at shell-crossing but occur at later times when LPT already ceased to provide physically meaningful results.


2014 ◽  
Vol 11 (S308) ◽  
pp. 310-317
Author(s):  
Marc Davis ◽  
Adi Nusser

AbstractComparison of galaxy flows with those predicted from the local galaxy distribution ended as an active field after two analyses came to vastly different conclusions 25 years ago, but that was due to faulty data. All the old results are therefore suspect. With new data collected in the last several years, the problem deserves another look. The goal is to explain the 640 km/s dipole anisotropy of the CMBR. For this we analyze the gravity field inferred from the enormous data set derived from the 2MASS collection of galaxies (Huchra et al. 2005), and compare it to the velocity field derived from the well calibrated SFI++ Tully-Fisher catalog (Springob et al. 2007). Using the “Inverse Method” to minimize Malmquist biases, within 10,000 km/s the gravity field is seen to predict the velocity field (Davis et al. 2011) to remarkable consistency. This is a beautiful demonstration of linear perturbation theory and is fully consistent with standard values of the cosmological variables.


2013 ◽  
Vol 138 (10) ◽  
pp. 104104 ◽  
Author(s):  
Werner Győrffy ◽  
Toru Shiozaki ◽  
Gerald Knizia ◽  
Hans-Joachim Werner

Sign in / Sign up

Export Citation Format

Share Document