scholarly journals Ferroelectric gate tunnel field-effect transistors with low-power steep turn-on

AIP Advances ◽  
2014 ◽  
Vol 4 (10) ◽  
pp. 107117 ◽  
Author(s):  
M. H. Lee ◽  
Y.-T. Wei ◽  
J.-C. Lin ◽  
C.-W. Chen ◽  
W.-H. Tu ◽  
...  
2019 ◽  
Vol 25 (7) ◽  
pp. 455-462 ◽  
Author(s):  
Anne S. Verhulst ◽  
William G. Vandenberghe ◽  
Daniele Leonelli ◽  
Rita Rooyackers ◽  
Anne Vandooren ◽  
...  

2021 ◽  
Author(s):  
Марина Евгеньевна Сычева ◽  
Светлана Анатольевна Микаева

В статье рассмотрены основные типы CNTFET транзисторов, изготовленных на углеродных нанотрубках. Представлена классификация, особенности конструкции и основные этапы технологии изготовления CNTFET транзисторов. Полевые транзисторы из углеродных нанотрубок (CNTFET) являются перспективными наноразмерными устройствами для реализации высокопроизводительных схем с очень плотной и низкой мощностью. The article considers the main types of CNTFET transistors made on carbon nanotubes. The classification, design features and the main stages of the CNTFET transistor manufacturing technology are presented. Carbon nanotube field effect transistors (CNTFET) are promising nanoscale devices for implementing high-performance circuits with very dense and low power.


Author(s):  
Марина Евгеньевна Сычева ◽  
Светлана Анатольевна Микаева

В статье рассмотрены нанотранзисторы и основные свойства нанотрубок. Представлен обзор CNTFET транзисторов и основные особенности технологии их изготовления. Полевые транзисторы из углеродных нанотрубок (CNTFET) являются перспективными наноразмерными устройствами для реализации высокопроизводительных схем с очень плотной и низкой мощностью. Проводящий канал CNTFET представляет собой углеродную нанотрубку. The article deals with nanotransistors and the main properties of nanotubes. An overview of CNTFET transistors and the main features of their manufacturing technology is presented. Carbon nanotube field effect transistors (CNTFETs) are promising nanoscale devices for implementing high-performance circuits with very dense and low power. The CNTFET conducting channel is a carbon nanotube.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 223 ◽  
Author(s):  
Yannan Zhang ◽  
Ke Han ◽  
and Jiawei Li

Ultra-low power and high-performance logical devices have been the driving force for the continued scaling of complementary metal oxide semiconductor field effect transistors which greatly enable electronic devices such as smart phones to be energy-efficient and portable. In the pursuit of smaller and faster devices, researchers and scientists have worked out a number of ways to further lower the leaking current of MOSFETs (Metal oxide semiconductor field effect transistor). Nanowire structure is now regarded as a promising candidate of future generation of logical devices due to its ultra-low off-state leaking current compares to FinFET. However, the potential of nanowire in terms of off-state current has not been fully discovered. In this article, a novel Core–Insulator Gate-All-Around (CIGAA) nanowire has been proposed, investigated, and simulated comprehensively and systematically based on 3D numerical simulation. Comparisons are carried out between GAA and CIGAA. The new CIGAA structure exhibits low off-state current compares to that of GAA, making it a suitable candidate of future low-power and energy-efficient devices.


2005 ◽  
Vol 871 ◽  
Author(s):  
Yohai Roichman ◽  
Nir Tessler

AbstractTurn-on dynamics of polymer field effect transistors were examined experimentally over a wide timescale. We found that the source current dependence on time following switch on of the gate bias exhibits a power law at the short time range, and an exponential decay at the intermediate to long time range. We demonstrate that the transistor dynamic behavior is governed by the channel charge build-up, and can be described accurately by a simple capacitor-resistor distributed line model.


2014 ◽  
Vol 23 (01n02) ◽  
pp. 1450005
Author(s):  
Murali Lingalugari ◽  
John Chandy ◽  
Faquir Jain ◽  
El-Sayed Hasaneen ◽  
Evan Heller

In this paper, we propose a new architecture for analog-to-digital converters (ADCs) using multistate spatial wavefunction-switched field-effect transistors (SWSFETs). SWSFETs are multiple quantum coupled well devices, where the wells are stacked vertically and the electron wavefunction switches from one well to another with the change in gate voltage. Quantum mechanical simulations of 3-well InGaAs-AlInAs SWSFET structures are presented. The designs and simulations of 2-bit and 3-bit ADCs using SWSFETs result in low power consumption and reduced device count which improves the speed of the data conversion.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 645 ◽  
Author(s):  
Prasanna D. Patil ◽  
Sujoy Ghosh ◽  
Milinda Wasala ◽  
Sidong Lei ◽  
Robert Vajtai ◽  
...  

Innovations in the design of field-effect transistor (FET) devices will be the key to future application development related to ultrathin and low-power device technologies. In order to boost the current semiconductor device industry, new device architectures based on novel materials and system need to be envisioned. Here we report the fabrication of electric double layer field-effect transistors (EDL-FET) with two-dimensional (2D) layers of copper indium selenide (CuIn7Se11) as the channel material and an ionic liquid electrolyte (1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)) as the gate terminal. We found one order of magnitude improvement in the on-off ratio, a five- to six-times increase in the field-effect mobility, and two orders of magnitude in the improvement in the subthreshold swing for ionic liquid gated devices as compared to silicon dioxide (SiO2) back gates. We also show that the performance of EDL-FETs can be enhanced by operating them under dual (top and back) gate conditions. Our investigations suggest that the performance of CuIn7Se11 FETs can be significantly improved when BMIM-PF6 is used as a top gate material (in both single and dual gate geometry) instead of the conventional dielectric layer of the SiO2 gate. These investigations show the potential of 2D material-based EDL-FETs in developing active components of future electronics needed for low-power applications.


Sign in / Sign up

Export Citation Format

Share Document