Dynamic mechanical properties of natural rubber vulcanizates with different carbon nanotubes-loaded

2019 ◽  
Author(s):  
R. Ismail ◽  
A. Ibrahim ◽  
M. Rusop ◽  
A. Adnan
Polymer ◽  
1992 ◽  
Vol 33 (17) ◽  
pp. 3635-3638 ◽  
Author(s):  
Luis González Hernández ◽  
Luis Ibarra Rueda ◽  
Andrés Rodríguez Díaz ◽  
Celia Chamorro Antón

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
T. A. Dung ◽  
N. T. Nhan ◽  
N. T. Thuong ◽  
D. Q. Viet ◽  
N. H. Tung ◽  
...  

The dynamic mechanical behavior of modified deproteinized natural rubber (DPNR) prepared by graft copolymerization with various styrene contents was investigated at a wide range of temperatures. Graft copolymerization of styrene onto DPNR was performed in latex stage using tert-butyl hydroperoxide (TBHPO) and tetraethylene pentamine (TEPA) as redox initiator. The mechanical properties were measured by tensile test and the viscoelastic properties of the resulting graft copolymers at wide range of temperature and frequency were investigated. It was found that the tensile strength depends on the grafted polystyrene; meanwhile the dynamic mechanical properties of the modification of DPNR meaningfully improved with the increasing of both homopolystyrene and grafted polystyrene compared to DPNR. The dynamic mechanical properties of graft copolymer over a large time scale were studied by constructing the master curves. The value of bT has been used to prove the energetic and entropic elasticity of the graft copolymer.


2014 ◽  
Vol 925 ◽  
pp. 308-312 ◽  
Author(s):  
Mou'ad A. Tarawneh ◽  
Sahrim Haji Ahmad ◽  
Yu Li Jiun ◽  
Radwan Dweiri ◽  
Ibrahim N. Hassan

In this paper the polymer nanocomposite of nickel zinc (NiZn) ferrite nanoparticles incorporated into the thermoplastic natural rubber nanocomposite (TPNR) were prepared via melt blending method. The effect of different NiZn loading (2-10 wt%) on morphology, tensile and dynamic mechanical properties of the obtained composites was investigated. It was found that NiZn ferrite is well dispersed in the thermoplastic natural rubber matrix. The tensile results indicated that filler loading has improved the tensile strength and Youngs modulus of the nanocomposite. However, the elongation at break decreased with increasing the percentage of NiZn. Dynamic mechanical test showed that the highest storage modulus is at 8 wt% filler. Any further increment of the filler content leads to the formation of agglomerate hence affecting the properties. The Scanning electron micrograph (SEM) micrographs reveal aspect ratio and filler orientation in the TPNR matrix also strongly promoted interfacial adhesion between the filler and the matrix to control its properties.


Sign in / Sign up

Export Citation Format

Share Document