static strain
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 40)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Peide Liu ◽  
Zhichen Hu ◽  
Lijie Yang ◽  
Yi Zheng

2021 ◽  
Vol 50 (1) ◽  
pp. 745-745
Author(s):  
Sarah Blair ◽  
Harry Ramcharran ◽  
Joshua Satalin ◽  
Penny Andrews ◽  
Nader Habashi ◽  
...  

2021 ◽  
Author(s):  
Buer Sen ◽  
Zhihui Xie ◽  
Sean Howard ◽  
Maya Styner ◽  
Andre j van Wijnen ◽  
...  

Mesenchymal stem cells (MSC) respond to environmental forces with both cytoskeletal re-structuring and activation of protein chaperones of mechanical information, β-catenin and Yes-Associated Protein 1 (YAP1). To function, MSCs must differentiate between dynamic forces such as cyclic strains of extracellular matrix due to physical activity and static strains due to ECM stiffening. To delineate how MSCs recognize and respond differently to both force types, we compared effects of dynamic (200 cycles x 2%) and static (1 x 2% hold) strain on nuclear translocation of β-catenin and YAP1 at 3h after force application. Dynamic strain induced nuclear accumulation of β-catenin, and increased cytoskeletal actin structure and cell stiffness, but had no effect on nuclear YAP1 levels. Critically, both nuclear actin and nuclear stiffness increased along with dynamic strain-induced β-catenin transport. Augmentation of cytoskeletal structure using either static strain or lysophosphatidic acid (LPA) did not increase nuclear content of β-catenin or actin, but induced robust nuclear increase in YAP1. As actin binds β-catenin, we considered whether β-catenin, which lacks a nuclear localization signal, was dependent on actin to gain entry to the nucleus. Knockdown of cofilin-1 (Cfl1) or importin-9 (Ipo9), which co-mediate nuclear transfer of G-actin, prevented dynamic strain-mediated nuclear transfer of both β-catenin and actin. In sum, dynamic strain induction of actin re-structuring promotes nuclear transport of G-actin, concurrently supporting nuclear access of β-catenin via mechanisms utilized for actin transport. Thus, dynamic and static strain activate alternative mechanoresponses reflected by differences in the cellular distributions of actin, β-catenin and YAP1.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6846
Author(s):  
Haiyang Wang ◽  
Chuanjie Wang ◽  
Linfu Zhang ◽  
Gang Chen ◽  
Qiang Zhu ◽  
...  

The performance of clad foils in microforming deserves to be studied extensively, where the strain rate sensitivity of the clad foil concerning the forming performance is a crucial factor. In this paper, the strain rate sensitivity of the mechanical properties of coarse-grained (CG) Cu/Ni clad foils in the quasi-static strain rate range (ε˙=10−4 s−1~10−1 s−1) is explored by uniaxial tensile tests under different strain rates. The results show that the strength and ductility increase with strain rate, and the strain rate sensitivity m value is in the range of 0.012~0.015, which is three times the value of m for CG pure Cu. The fracture morphology shows that slip bands with different directions are entangled in localized areas near the interface layer. Molecular dynamics simulations demonstrate the formation of many edged dislocations at the Cu/Ni clad foils interface due to a mismatch interface. The improved ductility and strain rate sensitivity is attributed to the interaction and plugging of the edged dislocations with high density in the interface layer. Additionally, the influence of size effect on mechanical properties is consistently present in the quasi-static strain rate range. This paper helps to understand the strain rate sensitivity of CG clad foils and to develop clad foils in microforming processes.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1684
Author(s):  
Tamás Bálint Mező ◽  
Péter Barkóczy

Under quasi-static loading, an irregular failure mode of high-strength thin carbon steel cords were observed after low-temperature thermal aging. Character and kinetics of damage in such wire ropes highly depend on the plastic elongation of the steel wires, which is significantly modified by the strain aging effect. In this paper, the static strain aging effect on heavily drawn high-carbon steel wires and their cords is experimentally studied in the 80–200 °C temperature range. The kinetics of the aging process is studied in detail. Experimental data are fit by the Johnson–Mehl–Avrami–Kolmogorov (JMAK) kinetic model. The temperature dependence of the static strain aging process is given by means of the Arrhenius equation. The associated JMAK exponents, the apparent activation energy and the pre-exponential constant are determined. Quantitative analysis of the affected strength and strain parameters is given, and based on this, the macroscopic failure mechanism is fundamentally explained.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6121
Author(s):  
Jian-Zhi Chen ◽  
Qin Du ◽  
Guang-Ping Zhang ◽  
Bin Zhang

Cold-rolled EA4T steel was heat-treated by inter-critical holding at 755 °C for 90 s, 120 s, 180 s, and 240 s, respectively, and then quenching in water. The tensile testing results of the EA4T specimens show an evident transition from the discontinuous yielding to the continuous yielding of the steel specimens by prolonging the holding time. A novel relationship between the discontinuous yielding behavior of tensile-deformed steel specimens and the carbide size was proposed based on experimental results and Cottrell’s theory. The model may provide a new clue for avoiding discontinuous yielding and improving mechanical properties of metals with static strain aging behaviors.


2021 ◽  
pp. 147592172110506
Author(s):  
Nicholas E. Silionis ◽  
Konstantinos N. Anyfantis

Interest has been expressed during the past few years toward incorporating structural health monitoring (SHM) systems in ship hull structures for detecting damages that cause significant load-carrying reductions and subsequent load redistributions. The guiding principle of the damage identification strategy considered in this work is based upon measuring, through a limited number of sensors, the static strain redistributions caused by an extensive damage. The problem is tackled as a statistical pattern recognition one, and therefore, methods sourcing from machine learning (ML) are applied. The SHM strategy is both virtually and experimentally applied to a thin-walled prismatic geometry that represents an idealized hull form solely subjected to principal bending stresses (sagging/hogging). Damage modes causing extensive stress redistribution, are abstractly represented by a circular discontinuity. The damage identification problem is treated in a hierarchical order, initialized by damage detection and moving to an increasingly more localized prediction of the damage location. Training datasets for the ML tools are generated from numerical finite element simulations. Measurement uncertainty is propagated in the theoretical strains by information inferred from experimental data. Two different sensor architectures were assessed. An experimental programme is performed for testing the accuracy of the proposed damage identification strategy, yielding promising results and providing valuable insights.


2021 ◽  
Author(s):  
Yooleemi Shin ◽  
Mircea Vomir ◽  
Dong-Hyun Kim ◽  
Phuoc Van ◽  
Jong-Ryul Jeong ◽  
...  

Abstract The quasi-static strain (QSS) is the product induced by the lattice thermal expansion after ultrafast photo-excitation. Although the QSS and thermal effects are barely distinguishable in time, they should be treated separately because of their different fundamental actions to ultrafast spin dynamics. By employing ultrafast Sagnac interferometry and the magneto-optical Kerr effect, we demonstrate quantitatively the existence of QSS and the decoupling of two effects counteracting each other in typical polycrystalline Co and Ni films. The Landau-Lifshitz-Gilbert and Kittel equations considering a magnetoelastic energy term showed that QSS, rather than the thermal energy, in ferromagnets plays a governing role in ultrafast spin dynamics. This demonstration provides an essential way to analyze ultrafast photo-induced phenomena.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4812
Author(s):  
Daniel Zymelka ◽  
Kazuyoshi Togashi ◽  
Toshihiro Takeshita ◽  
Takahiro Yamashita ◽  
Takeshi Kobayashi

Recent progress in printable electronics has enabled the fabrication of printed strain sensors for diverse applications. These include the monitoring of civil infrastructure, the gradual aging of which raises concerns about its effective maintenance and safety. Therefore, there is a need for automated sensing systems that provide information on the performance and behavior of engineering structures that are subjected to dynamic and static loads. The application of printed strain sensors in structural health monitoring is of growing interest owing to its large-area and cost-effective fabrication process. Previous studies have proven the suitability of printable strain sensors for dynamic strain measurements on bridges; however, the analysis of the long-term stability of printed sensors during static strain measurements is still lacking. Thus, this study aims to assess the long-term stability of printed strain sensor arrays and their suitability for the static strain analysis of large civil structures. The developed sensors and a dedicated wireless data acquisition system were deployed inside a gravity dam, which was selected as the field test environment. This test environment was chosen owing to the relatively stable temperature inside the dam and the very slow static strain changes associated with periodic water level changes. The results exhibited an average signal drift of 20 μϵ over 127 days. One of the sensor arrays was installed on a small crack in the dam structure; it showed that the sensors can track static strain changes owing to variations in the crack opening, which are related to the water level changes in the dam. Overall, the results of the developed sensors exhibit good strain sensitivity and low signal drift. This indicates the potential suitability of printed sensors for applications in the static strain analysis of engineering structures.


Sign in / Sign up

Export Citation Format

Share Document