Optimum design of catalytic converter to reduce carbon monoxide emissions on diesel engine

2020 ◽  
Author(s):  
Rajasekar Rajendran ◽  
U. Logesh ◽  
N. S. Praveen ◽  
Ganesan Subbiah
2018 ◽  
Vol 19 (12) ◽  
pp. 90-96
Author(s):  
Kazimierz Koliński

The article presents the results of research on the functioning of the heated catalytic reactor at the dynamometric stand during the implementation of the simulated UDC city test. In the research, a heated three-functional platinum-palladium catalytic reactor with a metal monolith was used. The methodology of the conducted research consisted in the measurement of concentration of toxic components of the exhaust gas before and after with the catalytic reactor, with simultaneous measurement of the start-up parameters and temperature measurement at selected points of the engine and the catalytic converter. Emissions of carbon monoxide and hydro-carbons were reduced by pre-heating the catalytic converter before and during start-up with an electric heater


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Soni S. Wirawan dkk

Biodiesel is a viable substitute for petroleum-based diesel fuel. Its advantages are improved lubricity, higher cetane number and cleaner emission. Biodiesel and its blends with petroleum-based diesel fuel can be used in diesel engines without any signifi cant modifi cations to the engines. Data from the numerous research reports and test programs showed that as the percent of biodiesel in blends increases, emission of hydrocarbons (HC), carbon monoxide (CO), and particulate matter (PM) all decrease, but the amount of oxides of nitrogen (NOx) and fuel consumption is tend to increase. The most signifi cant hurdle for broader commercialization of biodiesel is its cost. In current fuel price policy in Indonesia (especially fuel for transportation), the higher percent of biodiesel in blend will increase the price of blends fuel. The objective of this study is to assess the optimum blends of biodiesel with petroleum-based diesel fuel from the technically and economically consideration. The study result recommends that 20% biodiesel blend with 80% petroleum-based diesel fuel (B20) is the optimum blend for unmodifi ed diesel engine uses.Keywords: biodiesel, emission, optimum, blend


2021 ◽  
pp. 28-32
Author(s):  
VALERIY L. CHUMAKOV ◽  

The paper shows some ways to improve the environmental characteristics of a diesel engine using gaseous hydrocarbon fuel and operating the engine in a gas-diesel cycle mode. Some possibilities to reduce toxic components of exhaust gases in a gas-diesel engine operating on liquefi ed propane-butane mixtures have been studied. Experiments carried out in a wide range of load from 10 to 100% and speed from 1400 to 2000 rpm showed that the gas-diesel engine provides a suffi ciently high level of diesel fuel replacement with gas hydrocarbon fuel. The authors indicate some eff ective ways to reduce the toxicity of exhaust gases. The engine power should be adjusted by the simultaneous supply of fuel, gas and throttling the air charge in the intake manifold. This method enriches the fi rst combusting portions to reduce nitrogen oxides and maintains the depletion of the main charge within the fl ammability limits of the gas-air charge to reduce carbon monoxide and hydrocarbons. The authors found that when the engine operates in a gas-diesel cycle mode, the power change provides a decrease in nitrogen oxide emissions of gas-diesel fuel only due to gas supply in almost the entire load range as compared to the pure diesel. At high loads (more than 80%) stable engine operation is ensured up to 90% of diesel fuel replaced by gas. Even at 10% of diesel fuel used the concentration of nitrogen oxides decreases by at least 15…20% as compared with a diesel engine in the entire load range. However, there is an increased emission of hydrocarbons and carbon monoxide in the exhaust gases. Further experimental studies have shown that optimization of the gas diesel regulation can reduce the mass emission of nitrogen oxides contained in exhaust gases in 2…3 times and greatly reduce the emission of incomplete combustion products – carbon monoxide and hydrocarbons.


Author(s):  
Vít Marek ◽  
Lukáš Tunka ◽  
Adam Polcar ◽  
Dušan Slimařík

This paper deals with reduction of NOx-emission of a diesel engine with multiple injection pump by SCR catalytic converter. Main aim of the measurement was the detection of SCR catalyst converter efficiency. Tests were realized at the Research and Development workplace of Zetor Tractor a.s. Used engine was equipped with a multiple injection pump with electromagnetic regulator of a fuel charge. During the experiment selective catalytic reduction and diesel particulate filter were used as an after treatment of harmful pollutants reduction. Testing cycle of the eight-point test was chosen and Non-Road Steady Cycle (NRSC) was maintained according to 97/68/EC directive. Results confirmed the dependencies between temperatures of SCR catalyst and exhaust gases and the volume of exhaust gases on efficiency of SCR catalyst. During the operation load of the engine, selective catalytic reduction reached efficiency over 90 %. Used after treatment system is suitable for reduction of harmful pollutants according to the Tier 4f norm.


Author(s):  
Sangil Kwon ◽  
Sung-Woo Kim ◽  
Ki-Ho Kim ◽  
Youngho Seo ◽  
Mun Soo Chon ◽  
...  

The purpose of this study is evaluate emission characteristics, such as nitrogen oxides (NOx), hydrocarbon, carbon monoxide, and particulate matter (PM), of excavator with Tier-4f level diesel engine in the real work conditions. The test excavator has an engine power of 124 kW at an engine speed of 1800rpm, and it has various after-treatment devices, such as exhaust gas recirculation (EGR), selective catalytic reduction (SCR), and diesel oxidation catalyst (DOC), to reduce the engine-out emissions. The emissions including carbon monoxide (CO), carbon dioxides (CO2), and NOx, were measured by portable emission measurement system (PEMS). The PEMS device conducted a correlation analysis with the emission bench on the engine dynamometer before being used to measure the real-work to confirm the reliability of the equipment. The tests were carried out in four categories: idling, driving, excavations and flattening. It revealed that the average power output for each operation mode was higher in the order of flattening, excavation, and drive. On average, those are higher than that for the non-road transient cycle (NRTC) certification mode as 1.5 to 1.9 times. It may be determined that the power output is higher in conditions where there are more boom and bucket movements than the movement of the vehicle itself. In emission analysis, NOx and HC emission in driving mode are higher than other two modes: excavation and flattening. The real time NOx have been low in most test conditions, but large quantities of NOx have been released due to the deactivation of the SCR catalyst during cold start period or immediately after the non-working.


Volume 2 ◽  
2004 ◽  
Author(s):  
Madhuri Jakkaraju ◽  
Vasudha Patri

I. C. Engines consume large amounts of fossil fuel emitting harmful pollutants like carbon monoxide (CO), unburnt hydrocarbons (UBHC), and oxides of nitrogen (NOx). By using a catalytic converter (CC), the carbon monoxide, hydrocarbon emissions can be transformed into less harmful carbon dioxide (CO2) & water vapor (H2O). Currently available CC’s are using costly noble metals like platinum (pt), palladium (pd), rhodium (rh) etc., hence making them expensive. This paper deals with the use of low-cost palletized silver coated alumina as the catalyst element in a CC. In this study, alumina and silver were used in the ratio of 10:1. All tests have been conducted on a stationary S.I. Engine at a constant speed of 1500 r.p.m with and without CC. Also, the performance of the palletized CC in combination with promoters like Bismuth, Cerium and Lanthanum was tested which have shown better results than silver alone as the coating element. It has been experimentally determined that the CO emissions have dropped from 7.25 (% vol) to 3.03(% vol) and the HC values have reduced from 350 ppm to 190 ppm.


Sign in / Sign up

Export Citation Format

Share Document