Dielectrophoresis-driven jet impingement heat transfers in microgravity conditions

2021 ◽  
Vol 33 (7) ◽  
pp. 073609
Author(s):  
Alex Jawichian ◽  
Laurent Davoust ◽  
Samuel Siedel
1972 ◽  
Vol 14 (6) ◽  
pp. 389-392 ◽  
Author(s):  
J. Ward ◽  
F. J. K. Ideriah ◽  
S. D. Probert ◽  
A. Duggan

The technique of using mass transfer measurements (by sublimation of naphthalene) together with the Chilton–Colburn analogy is shown to be feasible for evaluation of heat transfers from impinging jets. The method is then used to determine heat transfer coefficients at the burner walls in models of jet–impingement furnaces.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Zhiguo Tang ◽  
Feng Zhang ◽  
Shoucheng Wang ◽  
Jianping Cheng

Abstract Jet impingement is a technique for removing heat efficiently. A liquid jet impingement on a cone heat sink was investigated numerically to explore the effect of filet profiles at the top and bottom edge of conical protuberances on fluid flow and heat transfer. An adopted turbulence model was validated through an experiment as described in the literature. Numerical results of pressure coefficient and Nusselt number were obtained for cases with and without filet profiles for variable jet Reynolds numbers and conical angles. Results showed that the flow and heat transfer of conical protuberances with small tip filet profiles are similar to that of the original cone. Pressure coefficient curves are similar to that of convex surfaces, and the average heat transfer slightly increases when the radius of the tip filet profiles exceeds 1 mm. A small filet profile of a conical bottom edge can improve the average Nusselt number. A secondary jet that enhanced the overall heat transfer was demonstrated, and the heat transfers of convex surfaces, as the comparison, with small angles were enhanced in most cases.


2011 ◽  
Vol 3 (2) ◽  
pp. 136-137
Author(s):  
Dr. M.T. Bhoite Dr. M.T. Bhoite ◽  
◽  
Kartik Jujare ◽  
Sayali Wable

Sign in / Sign up

Export Citation Format

Share Document