Abstract
The moisture modifies the characteristics of heat transfer in building envelopes. Multiple factors, including the distinct hygric properties of various material, gravity, etc., affect the moisture content, resulting in a non-uniform distribution of water vapour in different parts of the envelope (e.g. column, beam, the main part of exterior walls). Usually, the more water vapour in a material, the higher the thermal conductivity, resulting in more heat transfers here. Moreover, condensation easily occurs where there is wet, marking such parts have risks both on structural safety and mould growth. The wall-to-floor thermal bridge (WFTB) occupies the largest area among all kinds of thermal bridges that formed by frame structures. In this study, we aimed to quantify the influence on heat loss through WFTB when the moisture transfer in envelopes is considered. The average apparent thermal resistance of WFTB (R
TB, ave) was defined to access the insulation performance of WFTB in practical application. The results of transient numerical simulation indicated that when the moisture transfer is considered, the insulation performance of building envelopes decreases significantly, while the adverse effect of WFTB on heat insulation becomes less pronounced. The results indicated that the measures of insulation for WFTB should be reconsidered when the moisture transfer is considered.