POROSITY GENERATION AND RESERVOIR POTENTIAL OF OULDBURRA FORMATION CARBONATES, OFFICER BASIN, SOUTH AUSTRALIA

1995 ◽  
Vol 35 (1) ◽  
pp. 106 ◽  
Author(s):  
M.R. Kamali ◽  
N.M. Lemon ◽  
S.N. Apak

Porosity generation and reservoir potential of the early Cambrian Ouldburra Formation in the eastern Officer Basin is delineated by combining petrographical, petrophysical and sedimentological studies. The shallow marine Ouldburra Formation consists of carbonates, mixed carbonates and clastics, clastics and evaporites. Detailed analysis of more than 100 samples shows that dolomitisation resulted in substantial secondary porosity development within the carbonates. Secondary porosity has also been generated within the mixed siliciclastic-carbonate zone by carbonate matrix and grain dissolution as well as by dolomitisation. Prospective reservoir units correspond to highstand shallow marine facies where short periods of subaerial exposure resulted in diagenetic changes.Sedimentary facies and rock character indicate that sabkha and brine reflux models are applied to dolomitisation within the Ouldburra Formation. Dolomite mainly occurs in two stages: common anhedral dolomites formed early by replacement of pre-existing limestone, and saddle dolomite and coarse crystalline dolomite formed during the late stages of burial diagenesis, associated with hydrocarbon shows. The dolomite reservoirs identified are ranked on the basis of their porosity distribution and texture into groups I to IV. Dolomites with rank I and II exhibit excellent to good reservoir characteristics respectively.The Ouldburra Formation shows many depositional and diagenetic similarities to the Richfield Member of the Lucas Formation in the Michigan Basin of the USA. Substantial oil and gas production from middle Devonian shallow water to sabkha dolomites makes the Richfield Member an attractive reservoir analogue to the Ouldburra Formation.

The present-day stage of the world hydrocarbon market development is characterized by the growing share of oil and gas production from the fields related to hard-to-recover reserves in terms of different criteria, which is a consequence of technological breakthrough in the USA. The strategic task of Russian oil and gas sector is to intensify the development of such fields with governmental support in the form of tax incentives. The goal of this research is to consider dynamics of oil production from the fields related to Bazhenov, Abalak, Domanic, and Khadumsk geological formations with enormous hydrocarbon potential thanks to tax incentives. The research method used is statistical analysis. The research results have shown the effectiveness of tax incentives, but due to absence of native development technologies, the effectiveness of incentives is evened, which requires different approaches to the tax incentive system.


2016 ◽  
Vol 56 (1) ◽  
pp. 51
Author(s):  
Maxwell Williamson

There have been 13 major inquiries completed during the past few years that have addressed the issue of hydraulic fracture stimulation (fraccing) in Australia. There are two inquiries due to report before mid-2016; namely in SA (Natural Resources Committee, Parliament of South Australia, 2015), and the Senate Inquiry (Parliament of Australia, 2015). These inquiries are in addition to many others conducted in overseas jurisdictions including various states of the US, Canada, and in countries in the European Union, including the UK. Concerns are usually concluded around ensuring there is a proper regulatory environment to confirm that the use of fraccing is conducted using international best practices, and the risk to the environment is minimised. In each and every responsible inquiry the conclusion has been that there is no scientific or public policy reason that would justifiably prevent the use of fraccing as a pre-well completion stimulation technique. This paper attempts to synthesise basic data about fraccing—why the ability to fracture stimulate wells is no longer a luxury but a necessity in deep oil and gas production—to convey factual information and summarise the results of inquiries in Australia to date. Comparisons between hydraulic fracture stimulation operations and results in the US and Australia are intended to provide comfort that some of the potentially more intense (massive) hydraulic fracture stimulation operations routinely conducted in the US (and Canada) on an individual well basis are not contemplated in the immediate future in Australia. The scale of North American fraccing activities may bear little resemblance to what may be proposed or occur in Australia owing to fundamental differences in geology, basin stress regimes, infrastructure, and cost and logistics, among other factors. The author’s conclusion is that fraccing in Australia can and will be carried out in a sphere of safety and regulation that many other countries are likely to aspire to copy. It would, however, be foolish to suggest hydraulic fracturing operations are not without some risk, as with many industrial and other daily activities, but the risks can be managed or mitigated with sound engineering and scientific practices. This is irrespective of the messages by opponents of hydraulic fracture stimulation in oil and gas wells. The modern practice of fraccing has been used now for more than 65 years, albeit with increasing scale commensurate with technological advances, which has caught the public’s imagination. Indeed, the results of inquiries have given no credence to demonising the technology.


Author(s):  
Sean Coburn ◽  
Greg Rieker ◽  
Kuldeep Prasad ◽  
Subhomoy Ghosh ◽  
Caroline Alden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document