Persistence of rare species depends on rare events: demography, fire response and phenology of two plant species endemic to a semiarid Banded Iron Formation range

2019 ◽  
Vol 67 (3) ◽  
pp. 268 ◽  
Author(s):  
Ben P. Miller ◽  
David R. Symons ◽  
Matthew D. Barrett

The association of rare plant species and Banded Iron Formation (BIF) ranges in semiarid Western Australia is a noted phenomenon. These ranges are also a focus of iron ore exploration and mining. Decisions and planning required for development, conservation and management resulting from this interest, often consider translocation of these threatened species. Nonetheless, little is known about the ecology of BIF-endemic species to support any such decisions. We assessed population structure, patterns of growth, mortality, recruitment, reproduction and in situ seedbank persistence for two declared rare flora species. The shrub Darwinia masonii, and sedge Lepidosperma gibsonii are endemic to an area <40 km2 on the south-western boundary of the Australian arid zone. Both species were found to be long lived and slow growing, with evidence for reliance on rare events such as fire, and high rainfall years, including, for some processes, consecutive high rainfall years for growth, reproduction and recruitment. Retrieval and germination of seed batches shows that both species’ seedbanks are long-lived, with seasonal dormancy cycling. This, together with the ability of mature plants to survive through years not supporting growth, and, for L. gibsonii, to resprout after fire, are key mechanism for persistence in this unpredictable and low rainfall environment.

2021 ◽  
Author(s):  
Mohd Baqar Raza ◽  
Pritam Nasipuri ◽  
Hifzurrahman

<p>The Banded Iron Formation (BIF) in Bundelkhand craton (BuC) occurred as supracrustals associated with TTG’s, amphibolites, calcsilicate rocks, and quartzite within the east-west trending Bundelkhand tectonic zone (BTZ). The BIFs near Mauranipur do not show any prominent iron-rich and silica-rich layer band and are composed of garnet, amphibole, quartz, and magnetite. The volumetrically dominant monoclinic-amphiboles are grunerite in composition. X<sub>Mg</sub> of grunerite varies between 0.39-0.37. The garnets are Mn-rich, the X<sub>Spss</sub> of garnet ranges from 0.26-0.20, X<sub>Pyp</sub> and X<sub>Grs </sub>vary between 0.10-0.06 and 0.07-0.05, respectively. P-T pseudosection analysis indicates that by destabilizing iron-silicate hydroxide phases through a series of dehydration and decarbonation reactions, amphibole and garnet stabilized in BIF at temperature 400-450°C and pressure 0.1-0.2 GPa.</p><p>Massive type BIFs have monazite grains that vary from 10 to 50 µm in size, yield three distinct U-Th-Pb<sub>total</sub> age clusters. 10-20 µm sized monazite grains yield the oldest age, 3098±95 Ma. 2478±37 Ma average age is obtained from the second group, which is relatively larger and volumetrically predominant. The third age group of Monaiztes gives an age of 2088±110 Ma. ~3100 Ma monazite suggests the older supracrustal rocks of Bundelkhand craton, similar to those obtained from Singhbhum and the Dharwar craton. The 2478±37 Ma age is constrained as the timing of metamorphism and stabilization of BuC. The third age group, 2088±110 Ma probably associated with renewed hydrothermal activities, leading to rifting and emplacement of mafic dykes in BuC.</p>


2020 ◽  
Vol 115 (1) ◽  
pp. 189-204
Author(s):  
Li-Xing Li ◽  
Jian-Wei Zi ◽  
Jie Meng ◽  
Hou-Min Li ◽  
Birger Rasmussen ◽  
...  

Abstract High-grade hematite mineralization is widely developed in banded iron formations (BIFs) worldwide. However, in the North China craton where Neoarchean-Paleoproterozoic BIFs are abundant, economic high-grade hematite ores are scarce. High-grade hematite ores hosted in the Paleoproterozoic Yuanjiacun BIFs represent the largest occurrence of this type of ore in the North China craton. The orebodies are fault controlled and show sharp contacts with lower greenschist facies metamorphic BIFs. In situ U-Pb geochronology of monazite and xenotime intergrown with microplaty hematite and martite in high-grade ore established two episodes of metamorphic-hydrothermal monazite/xenotime growth after deposition of the BIFs. The earlier episode at ca. 1.94 Ga is interpreted as the timing of lower greenschist-facies metamorphism, and the later episode at 1.41 to 1.34 Ga represents the timing of high-grade hematite mineralization. Petrography and microthermometry of primary fluid inclusion assemblages indicate that the high-grade hematite ore formed from hot (313°–370°C), CO2-rich, and highly saline (~20 wt % NaCl equiv) hydrothermal fluids. These fluids channeled along faults, which concentrated iron through interaction with the BIFs—a process similar to typical hematite mineralization elsewhere. The deposition of hematite was probably related to tectonic extension in the North China craton related to the breakup of the Columbia/Nuna supercontinent. Our results challenge a previously proposed model ascribing the scarcity of high-grade hematite ores in the North China craton to the lack of prolonged weathering conditions. Rather, we argue that the high-grade ore formed in lower metamorphic-grade BIFs at shallower depths than magnetite mineralization and was largely eroded during later exhumation and uplift of the craton.


2004 ◽  
Vol 13 (1-4) ◽  
pp. 1-13 ◽  
Author(s):  
P.A. GEUSEBROEK ◽  
N.A. DUKE

Abstract The Lupin mine, located in the central Slave province just east of the western boundary of Nunavut Territory, is a world-class example of a Neoarchean-aged banded iron formation (BIF)-hosted lode-gold deposit. At the minesite the gold-mineralized Lupin BIF, separating stratigraphically underlying psammitic wacke and overlying argillaceous turbidite sequences, delineates the Lupin dome, a hammerhead-shaped F2/F3 interference fold structure occurring at the greenschist to amphibolite facies metamorphic transition within the thermal aureole of the Contwoyto batholith. Detailed paragenetic relationships indicate that peak thermal metamorphism coincided with the switch from regional D2 compression to rapid D3 unroofing of the Neoarchean orogenic infrastructure. Gold initially precipitated with pyrrhotite, replacing amphibolitic BIF at the apex of the Lupin deformation zone, separating the east and west lobes of the Contwoyto batholith. Over the course of associated prograde/retrograde metasomatic overprints, gold was further remobilized during garnet and loellingite/arsenopyrite growth in chlorite-altered selvages of late-forming ladder quartz veins. A metamorphic model of ore genesis, with gold being scavenged and transported by metamorphic fluid that was shed and structurally trapped at the amphibolite recrystallization front, is favored over the previously proposed syngenetic and exogenic models of gold concentration that have tended to polarize genetic interpretations to date.


2019 ◽  
Vol 67 (3) ◽  
pp. 248 ◽  
Author(s):  
P. G. Ladd ◽  
C. J. Yates ◽  
R. Dillon ◽  
R. Palmer

Pollination and reproductive ecology of arid zone species in Australia are neglected topics. This is particularly true of rare species, some of which are threatened by mining operations. The bee community at Windarling Range in southern Western Australia and the pollination ecology of four rare Tetratheca taxa with distributions restricted to Banded Iron Formation inselbergs in the arid south-west were examined in winter and spring to understand if pollination rate was affecting the reproductive ecology of the plants. The bee fauna on the Windarling Range was sampled using coloured pan traps at three landscape positions of ridge (where Tetratheca paynterae subsp. paynterae occurs), slope and flats and the insect visitors to T. paynterae subsp. paynterae were quantified by direct observation. The bee fauna varied over the two years with average richness higher in 2010 than 2011 and was higher on the ridge compared with the slope and flats below the inselberg. The Tetratheca species are buzz pollinated and T. paynterae subsp. paynterae is only visited by a subsection of the bee fauna, mainly Lasioglossum species, which were shown to be relatively faithful to the species in terms of the pollen they carried. Flowering mainly occurs after the winter wet season, but may occur at other times when there has been substantial rain. This may not coincide with bee activity. In the winter flowers may be poorly serviced if maximum daytime temperatures are below 20°C. However, in spring when temperatures are higher the majority of flowers were pollinated and there was no significant difference in proportion of pollinated flowers between the four taxa examined. As T. paynterae is outcrossing the propensity for bees to attend few flowers on a visit to each plant, often on the outer part of the plant canopy, will likely ensure a high success rate for seed formation. High seed set in such an arid environment with few suitable sites for seedling establishment is essential so some propagules can find safe sites for establishment to maintain population numbers.


2015 ◽  
Vol 87 (4) ◽  
pp. 2097-2110 ◽  
Author(s):  
Jaquelina A. Nunes ◽  
Carlos E.G.R. Schaefer ◽  
Walnir G. Ferreira Júnior ◽  
Andreza V. Neri ◽  
Guilherme R. Correa ◽  
...  

Vegetation and soil properties of an iron-rich canga (laterite) island on the largest outcrop of banded-iron formation in Serra de Carajás (eastern Amazonia, Brazil) were studied along a topographic gradient (738-762 m asl), and analyzed to test the hypothesis that soil chemical and physical attributes play a key role in the structure and floristic composition of these plant communities. Soil and vegetation were sampled in eight replicate plots within each of the four vegetation types. Surface (0-10 cm) soil samples from each plot were analyzed for basic cations, N, P and plant species density for all species was recorded. CCA ordination analysis showed a strong separation between forest and non-forest sites on the first axis, and between herbaceous and shrubby campo rupestre on the second axis. The four vegetation types shared few plant species, which was attributed to their distinctive soil environments and filtering of their constituent species by chemical, physical and hydrological constraints. Thus, we can infer that Edaphic (pedological) factors are crucial in explaining the types and distributions of campo rupestre vegetation associated with ferruginous ironstone uplands (Canga) in Carajás, eastern Amazonia, therefore the soil properties are the main drivers of vegetation composition and structure on these ironstone islands.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kayla A. Calapa ◽  
Melissa K. Mulford ◽  
Tyler D. Rieman ◽  
John M. Senko ◽  
Augusto S. Auler ◽  
...  

Previous work demonstrated that microbial Fe(III)-reduction contributes to void formation, and potentially cave formation within Fe(III)-rich rocks, such as banded iron formation (BIF), iron ore and canga (a surficial duricrust), based on field observations and static batch cultures. Microbiological Fe(III) reduction is often limited when biogenic Fe(II) passivates further Fe(III) reduction, although subsurface groundwater flow and the export of biogenic Fe(II) could alleviate this passivation process, and thus accelerate cave formation. Given that static batch cultures are unlikely to reflect the dynamics of groundwater flow conditions in situ, we carried out comparative batch and column experiments to extend our understanding of the mass transport of iron and other solutes under flow conditions, and its effect on community structure dynamics and Fe(III)-reduction. A solution with chemistry approximating cave-associated porewater was amended with 5.0 mM lactate as a carbon source and added to columns packed with canga and inoculated with an assemblage of microorganisms associated with the interior of cave walls. Under anaerobic conditions, microbial Fe(III) reduction was enhanced in flow-through column incubations, compared to static batch incubations. During incubation, the microbial community profile in both batch culture and columns shifted from a Proteobacterial dominance to the Firmicutes, including Clostridiaceae, Peptococcaceae, and Veillonellaceae, the latter of which has not previously been shown to reduce Fe(III). The bacterial Fe(III) reduction altered the advective properties of canga-packed columns and enhanced permeability. Our results demonstrate that removing inhibitory Fe(II) via mimicking hydrologic flow of groundwater increases reduction rates and overall Fe-oxide dissolution, which in turn alters the hydrology of the Fe(III)-rich rocks. Our results also suggest that reductive weathering of Fe(III)-rich rocks such as canga, BIF, and iron ores may be more substantial than previously understood.


Author(s):  
Donald Eugene Canfield

This chapter considers the aftermath of the great oxidation event (GOE). It suggests that there was a substantial rise in oxygen defining the GOE, which may, in turn have led to the Lomagundi isotope excursion, which was associated with high rates of organic matter burial and perhaps even higher concentrations of oxygen. This excursion was soon followed by a crash in oxygen to very low levels and a return to banded iron formation deposition. When the massive amounts of organic carbon buried during the excursion were brought into the weathering environment, they would have represented a huge oxygen sink, drawing down levels of atmospheric oxygen. There appeared to be a veritable seesaw in oxygen concentrations, apparently triggered initially by the GOE. The GOE did not produce enough oxygen to oxygenate the oceans. Dissolved iron was removed from the oceans not by reaction with oxygen but rather by reaction with sulfide. Thus, the deep oceans remained anoxic and became rich in sulfide, instead of becoming well oxygenated.


Author(s):  
Peter R. Dawes ◽  
Bjørn Thomassen ◽  
T.I. Hauge Andersson

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Dawes, P. R., Thomassen, B., & Andersson, T. H. (2000). A new volcanic province: evidence from glacial erratics in western North Greenland. Geology of Greenland Survey Bulletin, 186, 35-41. https://doi.org/10.34194/ggub.v186.5213 _______________ Mapping and regional geological studies in northern Greenland were carried out during the project Kane Basin 1999 (see Dawes et al. 2000, this volume). During ore geological studies in Washington Land by one of us (B.T.), finds of erratics of banded iron formation (BIF) directed special attention to the till, glaciofluvial and fluvial sediments. This led to the discovery that in certain parts of Daugaard-Jensen Land and Washington Land volcanic rocks form a common component of the surficial deposits, with particularly colourful, red porphyries catching the eye. The presence of BIF is interesting but not altogether unexpected since BIF erratics have been reported from southern Hall Land just to the north-east (Kelly & Bennike 1992) and such rocks crop out in the Precambrian shield of North-West Greenland to the south (Fig. 1; Dawes 1991). On the other hand, the presence of volcanic erratics was unexpected and stimulated the work reported on here.


Sign in / Sign up

Export Citation Format

Share Document