Flory theory and excess thermodynamic properties of liquid mixtures containing one polar component

1978 ◽  
Vol 31 (10) ◽  
pp. 2145 ◽  
Author(s):  
KS Reddy ◽  
PR Naidu

Excess volumes of the binary mixtures, benzene + benzonitrile, benzene+ diethyl ketone and toluene+diethyl ketone, were determined at 303.15 K. The VE data and HE data of the mixtures reported in the literature were analysed in the light of both the original and modified forms of the Flory theory. The analysis showed that the modified Flory theory correctly predicts the sign of the excess functions over the whole range of composition when the single interaction parameter of the theory is treated as an energy parameter.

1974 ◽  
Vol 27 (3) ◽  
pp. 647 ◽  
Author(s):  
DV Fenby ◽  
NF Pasco

There has recently been a revival of interest in theories of liquid mixtures based on analytic equations of state for pure fluids. We have shown that the method used to determine the parameters of the pure-liquid equation of state has a significant effect on the excess thermodynamic properties obtained from such theories.


1972 ◽  
Vol 27 (11) ◽  
pp. 1611-1624
Author(s):  
F. Becker ◽  
M. Kiefer ◽  
P. Rhensius

Abstract A thermodynamic theory of liquid mixtures based on a simple molecular model is developed which describes the equilibrium state as the result of a coupling between a "chemical" and a "statistical" equilibrium. The intermolecular interactions are taken into account by considering "complexes" formed between a given molecule and its z nearest neighbours. The equilibrium mole fractions of these complexes are calculated by application of the ideal law of mass action to an appropriate set of "exchange equilibria". Formulae for the excess functions GE and HE and for the activities of the components are derived for the cases z=1 and z=4. GE depends on an equilibrium constant K describing the deviation from random distribution of the equilibrium mole fractions of the complexes. HE depends on K and on an energy parameter w which is related to differences of pair interactions. K and w are independent parameters, and there is no limitation in respect to amount and sign of the excess functions. The conditions for the existence of a critical solution point are formulated; at this point GE has a value of about 0.56 R T. If a model with two equilibrium constants is used allowing for instance competition between "self-association" and "complex-formation", the existence of closed miscibility gaps becomes possible. Closed miscibility curves are calculated and the conditions for their appearance are discussed. The relations between this theory and Guggenheim's statistical lattice theory of symmetrical mixtures are pointed out.


1976 ◽  
Vol 54 (14) ◽  
pp. 2280-2282 ◽  
Author(s):  
Murari Venkata Prabhakara Rao ◽  
Puligundla Ramachandra Naidu

Excess volumes of the three binary mixtures: (1) cyclohexane – diethyl ketone, (2) cyclohexane–benzonitrile, and (3) toluene–benzonitrile have been measured at 303.15 K using a dilatometer. Excess volumes of the first two systems are positive over the whole range of composition and are negative for the third system. The measured excess volumes and the excess heats of mixing reported in the literature for the three binary systems have been analysed in the light of the statistical theory of liquid mixtures developed by Flory. The analysis has shown that the theory in its modified form is approximately applicable to the mixtures cyclohexane–diethylketone and cyclohexane–benzonitrile.


Sign in / Sign up

Export Citation Format

Share Document