associated solutions
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 7)

H-INDEX

20
(FIVE YEARS 1)

Author(s):  
Ludi Yang ◽  
Xiang Gu ◽  
Jie Yu ◽  
Shengfang Ge ◽  
Xianqun Fan

Oncolytic viruses are naturally occurring or genetically engineered viruses that can replicate preferentially in tumor cells and inhibit tumor growth. These viruses have been considered an effective anticancer strategy in recent years. They mainly function by direct oncolysis, inducing an anticancer immune response and expressing exogenous effector genes. Their multifunctional characteristics indicate good application prospects as cancer therapeutics, especially in combination with other therapies, such as radiotherapy, chemotherapy and immunotherapy. Therefore, it is necessary to comprehensively understand the utility of oncolytic viruses in cancer therapeutics. Here, we review the characteristics, antitumor mechanisms, clinical applications, deficiencies and associated solutions, and future prospects of oncolytic viruses.


Author(s):  
Luisa Di Piazza ◽  
Valeria Marraffa ◽  
Bianca Satco

Abstract We focus on a very general problem in the theory of dynamic systems, namely that of studying measure differential inclusions with varying measures. The multifunction on the right hand side has compact non-necessarily convex values in a real Euclidean space and satisfies bounded variation hypotheses with respect to the Pompeiu excess (and not to the Hausdorff-Pompeiu distance, as usually in literature). This is possible due to the use of interesting selection principles for excess bounded variation set-valued mappings. Conditions for the minimization of a generic functional with respect to a family of measures generated by equiregulated left-continuous, nondecreasing functions and to associated solutions of the differential inclusion driven by these measures are deduced, under constraints only on the initial point of the trajectory.


Computers ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 74 ◽  
Author(s):  
Shahrin Sadik ◽  
Mohiuddin Ahmed ◽  
Leslie F. Sikos ◽  
A. K. M. Najmul Islam

Cybersecurity issues constitute a key concern of today’s technology-based economies. Cybersecurity has become a core need for providing a sustainable and safe society to online users in cyberspace. Considering the rapid increase of technological implementations, it has turned into a global necessity in the attempt to adapt security countermeasures, whether direct or indirect, and prevent systems from cyberthreats. Identifying, characterizing, and classifying such threats and their sources is required for a sustainable cyber-ecosystem. This paper focuses on the cybersecurity of smart grids and the emerging trends such as using blockchain in the Internet of Things (IoT). The cybersecurity of emerging technologies such as smart cities is also discussed. In addition, associated solutions based on artificial intelligence and machine learning frameworks to prevent cyber-risks are also discussed. Our review will serve as a reference for policy-makers from the industry, government, and the cybersecurity research community.


2020 ◽  
Vol 62 (12) ◽  
pp. 957-963
Author(s):  
V. I. Berdnikov ◽  
Yu. A. Gudim

The model of ideal associated solutions was used for the analysis of thermodynamic properties of the Ca – Si – Fe melt. Chemical equilibrium, as per the law of mass conservation between associates and monomers in the assumed model version, was performed without consideration of mole fractions of these particles in solution but with consideration of the absolute number of their moles. It allows taking account the changes in the associated solution mole composition depending on the concentration of its components. The understudied binary sub-system Ca – Si was analyzed most comprehensively. Using the latest data of temperature dependency of heat capacity for five types of intermetallics of this sub-system, types of stable associates in it were defined, i.e. Са2Si, СаSi in the solution range with low contents of silicon in solution and СаSi, СаSi2 in the solution range with high contents of silicon in solution. Thermodynamic properties of the corresponding intermetallics in the databases Terra, Astra and HSC notably differ from the computed properties of the associates. The reason of disagreement of experimental and reference data consists apparently in the inaccurate reference information based on the previous underestimated studies of intermetallics’ heat capacities. Analysis of mixing energy of Ca – Si alloy components has shown that concentration and temperature dependencies of excessive free energy closely follow the so-called pseudosubregular model of binary solutions. Only two types of stable associates were defined for the other sub-system Fe – Si, i.e. Fe3Si and FeSi. On the whole, energies of formation of these associates and respective intermetallics agree well. The third sub-system Ca – Fe was not considered because of the very limited mutual solubility of its components. Thus, only three associates, i.e. CaSi, CaSi2 , FeSi, are valid out of five possible in the triple system Ca – Si – Fe in the range with high concentrations of silicon. A calculation under this condition of thermodynamic properties of calcium silicon melts for CK10 – CK30 grades has shown that activity of silicon in them at temperature 1873 K constituted 0.6 – 0.7, whereas activities of other components do not exceed 0.01.


2018 ◽  
Vol 24 (2) ◽  
pp. 741-763 ◽  
Author(s):  
Tobias Breiten ◽  
Karl Kunisch ◽  
Laurent Pfeiffer

Using a projection-based decoupling of the Fokker−Planck equation, control strategies that allow to speed up the convergence to the stationary distribution are investigated. By means of an operator theoretic framework for a bilinear control system, two different feedback control laws are proposed. Projected Riccati and Lyapunov equations are derived and properties of the associated solutions are given. The well-posedness of the closed loop systems is shown and local and global stabilization results, respectively, are obtained. An essential tool in the construction of the controls is the choice of appropriate control shape functions. Results for a two dimensional double well potential illustrate the theoretical findings in a numerical setup.


2017 ◽  
Vol 27 (4) ◽  
pp. 575-594 ◽  
Author(s):  
Dušan Krokavec ◽  
Anna Filasová

AbstractThe paper mitigates the existing conditions reported in the previous literature for control design of discrete-time linear positive systems. Incorporating an associated structure of linear matrix inequalities, combined with the Lyapunov inequality guaranteing asymptotic stability of discrete-time positive system structures, new conditions are presented with which the state-feedback controllers and the system state observers can be designed. Associated solutions of the proposed design conditions are illustrated by numerical illustrative examples.


Sign in / Sign up

Export Citation Format

Share Document