Application of physiological understanding in soybean improvement. I. Understanding phenological constraints to adaptation and yield potential

2011 ◽  
Vol 62 (1) ◽  
pp. 1 ◽  
Author(s):  
R. J. Lawn ◽  
A. T. James

The purpose of this paper and its companion1 is to describe how, in eastern Australia, soybean improvement, in terms of both breeding and agronomy, has been informed and influenced over the past four decades by physiological understanding of the environmental control of phenology. This first paper describes how initial attempts to grow soybean in eastern Australia, using varieties and production practices from the southern USA, met with limited success due to large variety × environment interaction effects on seed yield. In particular, there were large variety × location, variety × sowing date, and variety × sowing date × density effects. These various interaction effects were ultimately explained in terms of the effects of photo-thermal environment on the phenology of different varieties, and the consequences for radiation interception, dry matter production, harvest index, and seed yield. This knowledge enabled the formulation of agronomic practices to optimise sowing date and planting arrangement to suit particular varieties, and underpinned the establishment of commercial production in south-eastern Queensland in the early 1970s. It also influenced the establishment and operation over the next three decades of several separate breeding programs, each targeting phenological adaptation to specific latitudinal regions of eastern Australia. This paper also describes how physiological developments internationally, particularly the discovery of the long juvenile trait and to a lesser extent the semi-dwarf ideotype, subsequently enabled an approach to be conceived for broadening the phenological adaptation of soybeans across latitudes and sowing dates. The application of this approach, and its outcomes in terms of varietal improvement, agronomic management, and the structure of the breeding program, are described in the companion paper.

2011 ◽  
Vol 62 (12) ◽  
pp. 1056 ◽  
Author(s):  
L. G. Gaynor ◽  
R. J. Lawn ◽  
A. T. James

Serial sowing date studies were used to examine the response of a diverse range of soybean genotypes to sowing date in the Murrumbidgee Irrigation Area (MIA). The aim was to explore the scope to improve the flexibility for rotating irrigated summer soybean crops with winter cereals by broadening the range of potential sowing dates. Serial sowings of diverse genotypes were made in small plots at intervals of ~7 days (2006–07) or 10 days (2007–08) from late November to late January (2006–07) or mid-February (2007–08) and the dates of flowering and maturity recorded. Simple linear models relating rate of development towards flowering to photo-thermal variables indicated that large differences in time to flowering between genotypes, sowing dates, and years could be explained in terms of differences in genotype sensitivity to mean photoperiod and/or mean daily temperature between sowing and flowering. In general, warmer temperatures hastened and longer days delayed flowering, consistent with quantitative short-day photoperiodic response. The earliest flowering genotypes were insensitive to the prevailing photoperiods, and their smaller variations in time to flower over sowing dates and years were related to temperature. Conversely, later flowering genotypes were progressively more sensitive to photoperiod, with flowering occurring later and being more responsive to sowing date. In both seasons, late maturing genotype × sowing date combinations suffered cold temperature damage and frosting. For those genotype × sowing date combinations that were physiologically mature before the first frost, crop duration was a linear function (r2 = 0.86**) of time to flowering. In 2007–08, measurements were also made at maturity of total standing dry matter (TDM), seed yield, and seed size. For those genotype × sowing date combinations that matured before the first frost, TDM was largely a linear function (r2 = 0.83**) of crop duration, while seed yield was strongly related (r2 = 0.86**) to TDM. Exposure to cold temperatures before physiological maturity reduced seed size and harvest index. Using the generalised relations developed in these studies, it was concluded that commercial yields may be possible for irrigated soybean crops in the MIA sown in December or possibly later. These options are evaluated in greater detail in the companion paper, using large-scale agronomic trials of a subset of adapted genotypes.


2011 ◽  
Vol 62 (1) ◽  
pp. 12 ◽  
Author(s):  
A. T. James ◽  
R. J. Lawn

This paper describes the implementation of a strategy to develop high-yielding soybean cultivars with wider adaptation across latitudes and sowing dates using the ‘long juvenile’ (LJ) trait to ‘convert’ elite temperate cultivars to subtropical and tropical adaptation. In an initial proof-of-concept evaluation, temperate semi-dwarf cultivars from Ohio in the Mid-West of the USA (40°N) were converted into genotypes adapted to the subtropics of southern Queensland (25–28°S), of which cv. Melrose was the first to be released for commercial production. The effect of the LJ trait was to delay flowering of the new genotypes by 10–14 days depending on temperature, while retaining the high yield potential and lodging resistance of the temperate varieties. The temperate cultivars were insensitive to photoperiod in the subtropics, and this attribute was largely retained in cv. Melrose. The LJ trait was also used to convert temperate culinary soybean varieties from eastern Asia to subtropical–tropical adaptation, although susceptibility to disease required the simultaneous introgression of resistance genes from additional sources. Several elite LJ oilseed and culinary varieties with broad adaptation in eastern Australia have since been developed. Like Melrose, these varieties are earlier maturing (110–125 days duration) than traditional, full-season cultivars (120–140 days depending on sowing date), less sensitive to photoperiod, and require higher plant populations than full-season varieties for maximum yield. However, they can be grown over a wider range of latitudes and sowing dates than full-season varieties. Similarly, the LJ trait was used to delay flowering of very early flowering, photoperiod-insensitive soybean varieties used in Asian farming systems, increasing yield potential without changing photoperiod insensitivity. The broadening of varietal adaptation over latitudes and sowing dates has allowed public soybean breeding resources to be rationalised, with one national Australian program replacing four previous, regionally focused programs. The research provides a tangible example of how physiological understanding of genotype × environment interaction contributed to soybean improvement in eastern Australia.


1992 ◽  
Vol 43 (7) ◽  
pp. 1629 ◽  
Author(s):  
AJ Taylor ◽  
CJ Smith

Response of canola (Brassica napus) to factorial combinations of five sowing dates and seeding rates was investigated from 1987 to 1989. The experiments were conducted on red-brown earths in the Goulburn-Murray Irrigation Region of south-eastern Australia. Crops were sown at monthly intervals beginning in April each year. In 1987, seeding rates were 4.6, 7.0 and 14 kg ha-1, but in 1988 and 1989 the lowest rate was eliminated. The cultivar Marnoo was used each year and Eureka was included in 1989. There was no difference between yields of seed and oil for crops sown in April and May, but yields of seed and oil declined when sowing date was delayed beyond May. Oil contents were greater than 45% for the April, May and June sowings in 1988 and 1989. In contrast, seeding rates had no effect on yields of seed and oil. Marnoo produced a maximum seed yield of 398 g m-2 from the May sowing in 1987, and a minimum seed yield of 172 g m-2 from the September sowing in 1988. In 1989, Eureka out-yielded Marnoo in all but the August sowing. Eureka produced a maximum seed yield of 483 g m-2 from the April sowing and its lowest seed yield of 315 g m-2 from the August sowing. The number of pods per m2 was the major factor responsible for the significant changes in yield in all experiments. Seed yield was also strongly correlated (P < 0.01) with biomass, and to a lesser degree, with individual seed weight in all comparisons with the exception of Marnoo in 1989.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 161
Author(s):  
Alberto A. Chassaigne-Ricciulli ◽  
Leopoldo E. Mendoza-Onofre ◽  
Leobigildo Córdova-Téllez ◽  
Aquiles Carballo-Carballo ◽  
Félix M. San Vicente-García ◽  
...  

Genotype, environmental temperature, and agronomic management of parents influence seed yield in three-way cross hybrid maize seed production. The objective of this research was to generate information on the seed production of six three-way cross hybrids and their progenitors, adapted to tropical lowlands. Data on days to—and duration of—flowering, distance to spike and stigmas, and seed yield of five female single crosses and five male inbred lines were recorded for different combinations of four planting densities and four sowing dates in Mexico. The effect of planting density was not significant. The male inbred line T10 was the earliest and highest seed yield and T31 the latest, occupying second place in yield. The single crosses T32/T10 and T13/T14 were the earliest and had the highest effective seed yield. At the earliest sowing date, the females were later in their flowering, accumulated fewer growing degree days (GDD), and obtained higher yields since the grain-filling period coincided with hot days and cool nights. To achieve greater floral synchronization and therefore greater production of hybrid seed, differential planting dates for parents are recommended based on information from the accumulated GDD of each parent. The three-way cross hybrids were classified according to the expected seed yield of the females and the complexity in the synchronization of flowering of their parents.


2019 ◽  
Vol 113 (1) ◽  
pp. 51 ◽  
Author(s):  
Paolo CASINI

<p>Research on the introduction of quinoa in Italy is currently lacking. The present research was aimed at identifying the correct sowing period. Field experiment was consucted in Cesa, Tuscany, in 2017. Two new breeding lines coded as DISPAA-Q42 and DISPAA-Q47-CB were utilized. Three sowing dates (SD) were implemented: February 23; March 17 and April 27. Results showed that the most successful SD was February 23. A significant decrease in both seed yield and a delay in phenological phases, relating to plant maturation and flowering was associated with the sequential delay in SD in both lines. Results also showed a significant effect of lines on yield, true-leaf stage development, flower development and maturity. Only DISPAA-Q42 was considered suitable for cultivation in the Tuscan environment. DISPAA-Q47-CB was the more susceptible line, due to the sequential delay in SD and delayed plant maturation. No effect between lines was evident for protein and saponin content. The present study clearly shows the potential for the successful cultivation of quinoa in Central Italy, and highlights the necessity of taking into consideration both breeding lines and SD in order to accomplish this goal.</p>


2003 ◽  
Vol 83 (2) ◽  
pp. 357-362 ◽  
Author(s):  
J. L. Bodega ◽  
M. A. De Dios ◽  
M. M. Pereyra Iraola

Canarygrass (Phalaris canariensis L.) crops are sown from June to mid-September in the southeastern area of the province of Buenos Aires, Argentina. Sowing dates in this range result in different growing temperatures and photoperiods that affect the duration of developmental stages, biomass production, and seed yield and its components. For Argentina, there are no reported studies that address these effects. This study on the effects of sowing date was conducted during four growing seasons (1996–1999) at the Instituto Nacional de Tecnologí a Agropecuaria (INTA) Experimental Station at Balcarce, Argentina, using a population provided by Dr. Jaime Lloveras, University of Leyda, Spain. Different seeding dates were chosen from June to mid-September. The experiment was a randomized complete block design with four blocks. When the sowing date was delayed, total dry matter (DM) decreased. For early sowing dates seed yield was constant, but after 10 August it was reduced by 1.5% for each day of delay. Earlier sowing increased the duration of pre-anthesis development with greater uniformity in panicle size and the number of seeds. Seed yield was related lin early to the number of seeds and plant dry matter yield (DMY). The rate of progress from emergence to anthesis (1/days from emergence to anthesis) was proportional to the mean photoperiod. Under the environmental conditions in Balcarce, the accumulated required thermal units for anthesis was reduced when sowing was delayed from June to September. This reduction was related to the photoperiod and was estimated as –189.3 growing degree-days per hour of photoperiod increment. Key words: Canarygrass, seed yield, sowing date, yield components


1988 ◽  
Vol 28 (3) ◽  
pp. 367 ◽  
Author(s):  
DF Beech ◽  
GJ Leach

Six accessions of chickpea (Cicer arietinum L.), representing both desi and kabuli types, were grown at a range of row spacings (180-710 mm) in 3 experiments on a vertisol at Dalby, south-eastern Queensland to assess their adaptation and yield potential. Row spacing and sowing density (28-1 12 seeds m-2) were confounded in 2 experiments where intra-row density was constant, but were varied independently in the third. Differences in yield between accessions were either small or not significant in 1979, with above-average water availability (mean seed yield: 253 g m-2), and in 1980, when water was severely limited (mean seed yield: 79 and 120 g m-2 in the 2 experiments). However, the proportion of seed that was machine-harvestable was highest in the commercial cv. Tyson (71%), and also at the closest row spacing (83%). Seed nitrogen concentration was about 0.5% higher in cv. Tyson than in other accessions. It declined with an increase in row spacing and was associated with a higher proportion of small seeds. We conclude that there will be scope for alternatives to cv. Tyson as new market opportunities develop. Furthermore, the flexibility in its growth pattern makes chickpea well suited to the variable moisture regime of the wheatlands of subtropical eastern Australia.


2018 ◽  
Vol 47 (4) ◽  
pp. 291-297 ◽  
Author(s):  
Parisa Nazeri ◽  
Amir Hossein Shirani Rad ◽  
Seyed Alireza ValadAbadi ◽  
Mojtaba Mirakhori ◽  
Esmaeil Hadidi Masoule

To investigate the effects of sowing dates and late season water deficit stress on quantitative and qualitative traits of different canola cultivars, a 2-year field experiment was carried out in the 2014–2015 and 2015–2016 growing seasons. The experimental factors consisted of sowing date at two levels (7th and 27th October), irrigation at two levels (full irrigation and irrigation termination at silique formation stage) and four German canola cultivars including Trapper, Makro, Smilla, and Agamax. The results indicated that the main effects of sowing date, irrigation, and cultivar were significant on all studied characteristics except for harvest index. The interaction between sowing date and irrigation was also statistically significant on silique number per plant, oil percentage, linolenic acid, and erucic acid percentage. The results demonstrated that seed yield and its components oil percentage and oil yield, as well as oleic and linoleic acid percentage, decreased when sowing date was delayed until 27th October. Due to irrigation termination, all the studied traits decreased except for linolenic and erucic acid. Seed yield also decreased. The results suggest that to improve seed and oil yield, canola should be sown on 7th October and fully irrigated until physiological maturity stage in the study area.


Author(s):  
Amit Kaul ◽  
Charanjeet Kaur ◽  
Guriqbal Singh

A field experiment was conducted at Regional Research Station (Punjab Agricultural University) Gurdaspur and Krishi Vigyan Kendra, Pathankot during the spring season of 2016, to determine the performance of kidney bean genotypes at different sowing dates under sub-mountainous conditions of Punjab. The two kidney bean genotypes i.e. red and speckled were evaluated for yield potential at two locations by adopting different sowing dates viz., 20th January, 1st February, 10th February and 20th February, 2016. The treatments were laid out in split plot design with four replications by keeping sowing dates in main plots and genotypes in sub plots. Among different dates of sowing, crop sown on 10th February showed superiority than other dates through higher emergence count per meter row length, plant height, branches per plant, pods per plant, seeds per pod, length of pod, biological yield and seed yield. The seed yield in February 10 sown crop was 66.4, 33.3 and 21.7 per cent higher than February 20, January 10 and February 1 sown crop, respectively at Gurdaspur. Similarly, at Pathankot, the percent increase in seed yield in February 10 sown crop was 36.0 and 7.2 per cent as compared to February 20 and February 1 sown crop, respectively. The kidney bean genotype speckled produced significantly higher yield attributes (seeds per pod, length of pod and 100 seed weight) and seed yield at both Gurdaspur and Pathankot (935.1 and 823.1 kg per ha, respectively) as compared to red genotype. Therefore, it can be concluded that to attain higher productivity of kidney beans, the speckled genotype could be used for cultivation by adopting February 10 as the optimum time of sowing in the sub-mountainous area of Punjab.


Sign in / Sign up

Export Citation Format

Share Document