Impact of sodium adsorption ratio of irrigation water on the structural form of two Vertosols used for cotton production

Soil Research ◽  
2011 ◽  
Vol 49 (6) ◽  
pp. 481 ◽  
Author(s):  
S. D. Speirs ◽  
S. R. Cattle ◽  
G. J. Melville

In recent years, the production of cotton in Australia has been limited by the availability of irrigation water. To overcome this problem, poorer quality (Na+-rich) irrigation sources have been used in some situations, despite the effects elevated levels of Na+ may have on soil physical and chemical properties. This paper reports on changes in the surface-connected structural form attributes of two Vertosols from eastern Australia (one Red Vertosol, one Black Vertosol) after treatment with a range of different water-quality solutions. Intact soil columns from each of the Vertosols were irrigated through six wet–dry cycles using one of six treatment solutions with varying Na+ concentrations. Replicate columns for each treatment of each soil were analysed post-irrigation for selected chemical attributes. A second set of replicate columns was impregnated with a fluorescent resin post-irrigation, horizontally sectioned, and photographed under ultraviolet light. Image analysis was carried out on the section photographs to yield quantitative estimates of porosity (P), surface area (Sv), solid and pore star lengths (ls* and lp*), and solid and pore genus (gs and gp). Generally, the soil treated with the low-Na+ solution had the most desirable structural form attributes (larger P, Sv, and gp and smaller ls* and gs), while the soil treated with the high-Na+ solution had the least desirable structural attributes. The structural attributes and chemical properties of the Red Vertosol changed more markedly with water quality than did those of the Black Vertosol. The difference in response to water quality between these two soils is presumed to be related to the clay mineral suites and the exchange capacity of these soils; the Black Vertosol contains appreciably more smectite and has a much larger effective cation exchange capacity than the Red Vertosol.

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 660
Author(s):  
Qingqing Liu ◽  
Di Gao ◽  
Wei Xu

According to the old surface coating process of European and American furniture, the surface of modified poplar is first differentiated pre-treatment, and then the bottom color modification and material color modification are respectively applied to the modified poplar after the surface differentiation treatment. The visual physical quantity and physical and chemical properties were measured and compared with mahogany, which is commonly used in old furniture in Europe and America to explore the effect of colorants and coloring steps, as well as different surface pretreatments on the coloring effect. Finally, it is concluded that continuous coloring operations can narrow the difference in brightness and red color value in the coloring layer of modified poplar and mahogany. Continuous coloring operations increase the difference between the yellow-green color values of modified poplar and mahogany. Therefore, the coloring difference between modified poplar and mahogany was affected by the colorant and coloring steps. Through color accumulation, the gap between the two in the target color coloring effect can be reduced, thereby reducing the difference between the coloring effect of modified poplar and mahogany.


Soil Systems ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 25
Author(s):  
Ehsan Zare ◽  
Nan Li ◽  
Tibet Khongnawang ◽  
Mohammad Farzamian ◽  
John Triantafilis

The clay alluvial plains of Namoi Valley have been intensively developed for irrigation. A condition of a license is water needs to be stored on the farm. However, the clay plain was developed from prior stream channels characterised by sandy clay loam textures that are permeable. Cheap methods of soil physical and chemical characterisations are required to map the supply channels used to move water on farms. Herein, we collect apparent electrical conductivity (ECa) from a DUALEM-421 along a 4-km section of a supply channel. We invert ECa to generate electromagnetic conductivity images (EMCI) using EM4Soil software and evaluate two-dimensional models of estimates of true electrical conductivity (σ—mS m−1) against physical (i.e., clay and sand—%) and chemical properties (i.e., electrical conductivity of saturated soil paste extract (ECe—dS m−1) and the cation exchange capacity (CEC, cmol(+) kg−1). Using a support vector machine (SVM), we predict these properties from the σ and depth. Leave-one-site-out cross-validation shows strong 1:1 agreement (Lin’s) between the σ and clay (0.85), sand (0.81), ECe (0.86) and CEC (0.83). Our interpretation of predicted properties suggests the approach can identify leakage areas (i.e., prior stream channels). We suggest that, with this calibration, the approach can be used to predict soil physical and chemical properties beneath supply channels across the rest of the valley. Future research should also explore whether similar calibrations can be developed to enable characterisations in other cotton-growing areas of Australia.


1991 ◽  
Vol 55 (1) ◽  
pp. 203-209 ◽  
Author(s):  
J. L. Costa ◽  
Lyle Prunty ◽  
B. R. Montgomery ◽  
J. L. Richardson ◽  
R. S. Alessi

Author(s):  
Juliany Barbosa de Pinho ◽  
Aloisio Bianchini ◽  
Pedro Silvério Xavier Pereira ◽  
Letycia Cunha Nunes ◽  
Rodrigo Fernandes Daros ◽  
...  

From the pyrolysis process, biochar is a carbon rich and recalcitrant organic material with potential for long term carbon sequestration because of its aromatic structure. However, the physical and chemical properties of the biochar vary due to the diversity of raw material and the conditions of production. The present study aimed to evaluate the biochar from the sugarcane bagasse at different temperatures and under two conditions of pyrolysis. The biochar was produced at two final temperatures 200°C (1 hour); 250°C (1h) and 250°C (2h), with pyrolysis of an oxidizing and non-oxidizing atmosphere for both. PH, cation exchange capacity (CTC), carbon content (C), Nitrogen (N), hydrogen (H), H:C, C:N and ash ratios were evaluated. The contents of C, H, N and the atomic ratios H:C and C:N were higher in Biochar produced in a non-oxidizing atmosphere (BNO). However, the content of ash, pH and CTC were higher in Biochar produced in oxidizing atmospheres (BO). One can conclude the direct influence of the pyrolysis condition.


2011 ◽  
Vol 287-290 ◽  
pp. 2561-2564
Author(s):  
Jiang Wei Yao ◽  
Wei Dong Yu

Optim™ fine is a new generation of ultrafine wool fibres, which are transformed by stretching and setting from merino wool. The Optim™ fine retains some of the physical and chemical properties of merino wool, but the morphology and other properties changes, such as the diameter, length, lusture, breaking extension and shrinkage. These changes results in the performance difference btween the fabric woven from Optim™ fine and fine wool fiber. To clearly understande the reason of the difference, the morphological and physical properties changes of Optim™ fine was examined in this paper, and the performance difference between wool fabric and Optim™ fine fabric was evaluated by Fabric Assurance by Simple Testing(FAST). It was found that the decreasing in breaking extension and increasing in shrinkage of Optim™ fine resulted in the declining in formability and dimensional stability of Optim™ fine fabric. Suggestions on the ways of constructing Optim™ fine into fabric were also given according to the anlysis of relationship between the properties changes of Optim™ fine fiber and that of its fabric.


2014 ◽  
Vol 30 (3) ◽  
pp. 445-456 ◽  
Author(s):  
Z.Z. Ilic ◽  
A. Jevtic-Vukmirovic ◽  
Caro Petrovic ◽  
M.P. Petrovic ◽  
M.M. Petrovic ◽  
...  

Two genotype of sheep have been utilized in the conduct of the experiment composed of 60 ewes from Pirot x Virtemberg as genotype 1 and 60 ewes of Improved Pirot as genotype 2. All the ewes were reared under identical conditions and without any differences in nutrition and management during the whole period under study. The collection of Milk sampling was done in morning and evening during periods (1, 2, 3) of lactation duration. The average lactation duration and average total milk of the two genotypes were very close and has a minimal difference of 0.467 day and 1.562 kg, in favor of genotype 2. The differences between genotypes were not significant (P>0,05). Regarding physical and chemical properties of milk for both genotypes, the difference were very minimal such as follows; viscosity Pa x s - 0.006, electrical conductivity ? - 0.018, density kg/m3 -0,001, freezing, t 0C - 0.013, LD number - 0.028 total solids, % - 0.014, fat,% - 0,026, protein,% - 0.085, lactose,% - 0.038, ash,% - 0,021, acidity, 0SH - 0.209. The results indicated that the properties of milk for both genotypes were very near to each other. It can be interpreted that the breeds utilized in the experiment were comparable due to similar characteristics perhaps. The effect of genotype was very significant only for the % protein of the milk. The lactation periods were highly significant in all physical and chemical properties of milk.


Weed Science ◽  
1980 ◽  
Vol 28 (4) ◽  
pp. 429-432 ◽  
Author(s):  
T. E. Dutt ◽  
R. G. Harvey

Pronamide [3,5-dichloro-(N-1, 1-dimethyl-2-propynyl) benzamide] phytotoxicity was compared in 10 Wisconsin soils and the relationship of activity to soil physical and chemical properties appraised. Twelve soil properties were measured and correlated with pronamide I50(50% fresh weight inhibition) values using oats (Avena sativaL. ‘Portal’) as the indicator plant in bioassays conducted under greenhouse conditions. Organic matter was the soil variable most inversely correlated with pronamide phytotoxicity. Cation exchange capacity, field moisture capacity, and Mg content were also inversely correlated with pronamide phytotoxicity, but probably reflect changes in soil organic matter levels. Clay content did not significantly affect pronamide phytotoxicity.


2015 ◽  
Vol 5 ◽  
Author(s):  
Gabriela Sacchi ◽  
Paola Campitelli ◽  
Patricia Soria ◽  
Silvia Ceppi

Although natural and controlled fires are common in natural environments of the Province of Córdoba (Argentina), the effects on the physical and chemical soil properties are not well known. Warming effects were studied in two representative soil parent materials located in the piedmont of the Sierra Chica, Córdoba, Argentina. The aim of this study was to quantify the changes caused by different heating temperatures (100 °C and 500 °C), under laboratory conditions, on physical and chemical properties of two soils with different granulometric compositions and anthropic uses. The soils were classified as Udic Haplustoll, fine loamy (alluvial soils) and Udic Argiustoll, fine silty (loessoides soils). The depth analyzed corresponded to the upper 5 cm of the surface horizon. The physical property was granulometric composition (clay, silt and sand content) and the chemical properties: pH, oxidizable carbon (Cox), total nitrogen (Nt), cation exchange capacity (CEC), exchangeable cations (Ca<sup>+2</sup>, Mg<sup>+2</sup>, Na<sup>+</sup>, K<sup>+</sup>), extractable phosphorus (Pe) and electrical conductivity (EC). These analyses included both unheated samples (control) and those heated at different temperatures. Cox, pH, EC and CEC showed similar behavior at the different heating temperatures, despite the parent materials and the soil use conditions. Cox, pH, Nt and CEC could statistically explain the differences in edaphic properties at the temperatures analyzed. At 300 °C statistically significant differences were recorded for the analyzed soil parameters, and at 500 °C changes difficult to reverse due to the inorganic colloidal fraction collapse and the decrease (90%) of the organic fraction were found.


2008 ◽  
Vol 65 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Karien Rodrigues da Silveira ◽  
Mateus Rosas Ribeiro ◽  
Luiz Bezerra de Oliveira ◽  
Richard John Heck ◽  
Rachel Rodrigues da Silveira

Inadequate management of soil and irrigation water contribute to soil degradation, particularly in the alluvial areas of Northeast Brazil, where salinity and sodicity are already common features. This study evaluates the effects of the addition of gypsum in the irrigation water on physical and chemical properties of soils with different levels of salinity and sodicity. Samples were collected at the Custódia irrigation area of Brazil, predominantly covered by alluvial soils. Leaching tests using simulated irrigation water classified as C3S1, and gypsum-saturated irrigation water were carried out in soil columns of 20 and 50 cm depth. Soil leaching with gypsum saturated water (T2) resulted in an increase in the amounts of exchangeable calcium and potassium, and in a decrease of soil pH, in relation to the original soil (T0), with significant statistical differences to the treatment using only water (T1). There was a reduction in the electrical conductivity, exchangeable sodium and exchangeable sodium percentage in both treatments (T1 and T2), with treatment T2 being more effective in the leaching of soil sodium. No changes of electrical conductivity, calcium and pH in depth were observed, but the 20 - 50 cm layer presented higher amounts of magnesium, sodium and exchangeable sodium percentage. Gypsum saturated water improved the hydraulic conductivity in both layers. The use of gypsum in the irrigation water improved soil physical and chemical properties and should be considered as an alternative in the process of reclamation of saline-sodic and sodic soils in Northeast Brazil.


Sign in / Sign up

Export Citation Format

Share Document