scholarly journals Simulation of cell motility that reproduces the force-velocity relationship

2010 ◽  
Vol 107 (20) ◽  
pp. 9141-9146 ◽  
Author(s):  
C. H. Schreiber ◽  
M. Stewart ◽  
T. Duke
1981 ◽  
Vol 51 (3) ◽  
pp. 750-754 ◽  
Author(s):  
V. J. Caiozzo ◽  
J. J. Perrine ◽  
V. R. Edgerton

Seventeen male and female subjects (ages 20–38 yr) were tested pre- and posttraining for maximal knee extension torque at seven specific velocities (0, 0.84, 1.68, 2.51, 3.35, 4.19, and 5.03 rad . s-1) with an isokinetic dynamometer. Maximal knee extension torques were recorded at a specific joint angle (0.52 rad below the horizontal plane) for all test speeds. Subjects were randomly assigned to one of three experimental groups: group A, control, n = 7; group B, training at 1.68 rad . s-1, n = 5; or group C, training at 4.19 rad . s-1, n = 5. Subjects trained the knee extensors by performing two sets of 10 single maximal voluntary efforts three times a week for 4 wk. Before training, each training group exhibited a leveling-off of muscular tension in the slow velocity-high force region of the in vivo force-velocity relationship. Training at 1.68 rad . s-1 resulted in significant (P less than 0.05) improvements at all velocities except for 5.03 rad . s-1 and markedly affected the leveling-off in the slow velocity-high force region. Training at 4.19 rad . s-1 did not affect the leveling-off phenomenon but brought about significant improvements (P less than 0.05) at velocities of 2.51, 3.35, and 4.19 rad . s-1. The changes seen in the leveling-off phenomenon suggest that training at 1.68 rad . s-1 might have brought about an enhancement of motoneuron activation.


PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0190335 ◽  
Author(s):  
Axel J. Fenwick ◽  
Alexander M. Wood ◽  
Bertrand C. W. Tanner

2000 ◽  
Vol 89 (6) ◽  
pp. 2215-2219 ◽  
Author(s):  
Bill T. Ameredes ◽  
Wen-Zhi Zhan ◽  
Y. S. Prakash ◽  
Rene Vandenboom ◽  
Gary C. Sieck

We hypothesized that decrements in maximum power output (W˙max) of the rat diaphragm (Dia) muscle with repetitive activation are due to a disproportionate reduction in force (force fatigue) compared with a slowing of shortening velocity (velocity fatigue). Segments of midcostal Dia muscle were mounted in vitro (26°C) and stimulated directly at 75 Hz in 400-ms-duration trains repeated each second (duty cycle = 0.4) for 120 s. A novel technique was used to monitor instantaneous reductions in maximum specific force (Po) andW˙max during fatigue. During each stimulus train, activation was isometric for the initial 360 ms during which Po was measured; the muscle was then allowed to shorten at a constant velocity (30% V max) for the final 40 ms, and W˙max was determined. Compared with initial values, after 120 s of repetitive activation, Po andW˙max decreased by 75 and 73%, respectively. Maximum shortening velocity was measured in two ways: by extrapolation of the force-velocity relationship ( V max) and using the slack test [maximum unloaded shortening velocity ( V o)]. After 120 s of repetitive activation, V max slowed by 44%, whereas V o slowed by 22%. Thus the decrease inW˙max with repetitive activation was dominated by force fatigue, with velocity fatigue playing a secondary role. On the basis of a greater slowing of V max vs. V o, we also conclude that force and power fatigue cannot be attributed simply to the total inactivation of the most fatigable fiber types.


Sign in / Sign up

Export Citation Format

Share Document