scholarly journals Competitive exclusion by autologous antibodies can prevent broad HIV-1 antibodies from arising

2015 ◽  
Vol 112 (37) ◽  
pp. 11654-11659 ◽  
Author(s):  
Shishi Luo ◽  
Alan S. Perelson

The past decade has seen the discovery of numerous broad and potent monoclonal antibodies against HIV type 1 (HIV-1). Eliciting these antibodies via vaccination appears to be remarkably difficult, not least because they arise late in infection and are highly mutated relative to germline antibody sequences. Here, using a computational model, we show that broad antibodies could in fact emerge earlier and be less mutated, but that they may be prevented from doing so as a result of competitive exclusion by the autologous antibody response. We further find that this competitive exclusion is weaker in infections founded by multiple distinct strains, with broadly neutralizing antibodies emerging earlier than in infections founded by a single strain. Our computational model simulates coevolving multitype virus and antibody populations. Broadly neutralizing antibodies may therefore be easier for the adaptive immune system to generate than previously thought. If less mutated broad antibodies exist, it may be possible to elicit them with a vaccine containing a mixture of diverse virus strains.

Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 76 ◽  
Author(s):  
Mitch Brinkkemper ◽  
Kwinten Sliepen

The enormous sequence diversity between human immunodeficiency virus type 1 (HIV-1) strains poses a major roadblock for generating a broadly protective vaccine. Many experimental HIV-1 vaccine efforts are therefore aimed at eliciting broadly neutralizing antibodies (bNAbs) that are capable of neutralizing the majority of circulating HIV-1 strains. The envelope glycoprotein (Env) trimer on the viral membrane is the sole target of bNAbs and the key component of vaccination approaches aimed at eliciting bNAbs. Multimeric presentation of Env on nanoparticles often plays a critical role in these strategies. Here, we will discuss the different aspects of nanoparticles in Env vaccination, including recent insights in immunological processes underlying their perceived advantages, the different nanoparticle platforms and the various immunogenicity studies that employed nanoparticles to improve (neutralizing) antibody responses against Env.


2014 ◽  
Vol 211 (12) ◽  
pp. 2361-2372 ◽  
Author(s):  
Florian Klein ◽  
Lilian Nogueira ◽  
Yoshiaki Nishimura ◽  
Ganesh Phad ◽  
Anthony P. West ◽  
...  

Antibody-mediated immunotherapy is effective in humanized mice when combinations of broadly neutralizing antibodies (bNAbs) are used that target nonoverlapping sites on the human immunodeficiency virus type 1 (HIV-1) envelope. In contrast, single bNAbs can control simian–human immunodeficiency virus (SHIV) infection in immune-competent macaques, suggesting that the host immune response might also contribute to the control of viremia. Here, we investigate how the autologous antibody response in intact hosts can contribute to the success of immunotherapy. We find that frequently arising antibodies that normally fail to control HIV-1 infection can synergize with passively administered bNAbs by preventing the emergence of bNAb viral escape variants.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Karim Dorgham ◽  
Nicolas Pietrancosta ◽  
Amel Affoune ◽  
Olivier Lucar ◽  
Tahar Bouceba ◽  
...  

The design of immunogens susceptible to elicit potent and broadly neutralizing antibodies against the human immunodeficiency virus type 1 (HIV-1) remains a veritable challenge in the course of vaccine development. Viral envelope proteins adopt different conformational states during the entry process, allowing the presentation of transient neutralizing epitopes. We focused on the highly conserved 3S motif of gp41, which is exposed to the surface envelope in its trimeric prefusion state. Vaccination with a W614A-modified 3S peptide induces in animals neutralizing anti-HIV-1 antibodies among which we selected clone F8. We used F8 as bait to select for W614A-3S phage-peptide mimics. Binding and molecular docking studies revealed that F8 interacts similarly with W614A-3S and a Mim_F8-1 mimotope, despite their lack of sequence homology, suggesting structural mimicry. Finally, vaccination of mice with the purified Mim_F8-1 phage elicited HIV-1-neutralizing antibodies that bound to the cognate W614A-3S motif. Collectively, our findings provide new insights into the molecular design of immunogens to elicit antibodies with neutralizing properties.


2015 ◽  
Vol 89 (15) ◽  
pp. 7813-7828 ◽  
Author(s):  
Randi B. Gombos ◽  
Dror Kolodkin-Gal ◽  
Leila Eslamizar ◽  
Joshua O. Owuor ◽  
Emanuele Mazzola ◽  
...  

ABSTRACTTo date, most therapeutic and vaccine candidates for human immunodeficiency virus type 1 (HIV-1) are evaluated preclinically for efficacy against cell-free viral challenges. However, cell-associated HIV-1 is suggested to be a major contributor to sexual transmission by mucosal routes. To determine if neutralizing antibodies or inhibitors block cell-free and cell-associated virus transmission of diverse HIV-1 strains with different efficiencies, we tested 12 different antibodies and five inhibitors against four green fluorescent protein (GFP)-labeled HIV-1 envelope (Env) variants from transmitted/founder (T/F) or chronic infection isolates. We evaluated antibody/inhibitor-mediated virus neutralization using either TZM-bl target cells, in which infectivity was determined by virus-driven luciferase expression, or A3R5 lymphoblastoid target cells, in which infectivity was evaluated by GFP expression. In both the TZM-bl and A3R5 assays, cell-free virus or infected CD4+lymphocytes were used as targets for neutralization. We further hypothesized that the combined use of specific neutralizing antibodies targeting HIV-1 Env would more effectively prevent cell-associated virus transmission than the use of individual antibodies. The tested antibody combinations included two gp120-directed antibodies, VRC01 and PG9, or VRC01 with the gp41-directed antibody 10E8. Our results demonstrated that cell-associated virus was less sensitive to neutralizing antibodies and inhibitors, particularly using the A3R5 neutralization assay, and the potencies of these neutralizing agents differed among Env variants. A combination of different neutralizing antibodies that target specific sites on gp120 led to a significant reduction in cell-associated virus transmission. These assays will help identify ideal combinations of broadly neutralizing antibodies to use for passive preventive antibody administration and further characterize targets for the most effective neutralizing antibodies/inhibitors.IMPORTANCEPrevention of the transmission of human immunodeficiency virus type 1 (HIV-1) remains a prominent goal of HIV research. The relative contribution of HIV-1 within an infected cell versus cell-free HIV-1 to virus transmission remains debated. It has been suggested that cell-associated virus is more efficient at transmitting HIV-1 and more difficult to neutralize than cell-free virus. Several broadly neutralizing antibodies and retroviral inhibitors are currently being studied as potential therapies against HIV-1 transmission. The present study demonstrates a decrease in neutralizing antibody and inhibitor efficiencies against cell-associated compared to cell-free HIV-1 transmission among different strains of HIV-1. We also observed a significant reduction in virus transmission using a combination of two different neutralizing antibodies that target specific sites on the outermost region of HIV-1, the virus envelope. Therefore, our findings support the use of antibody combinations against both cell-free and cell-associated virus in future candidate therapy regimens.


2014 ◽  
Vol 21 (12) ◽  
pp. 1230-1239
Author(s):  
Yang Zang ◽  
Jinpeng Bi ◽  
Dongchuan Du ◽  
Xintao Liu ◽  
Yan Zhang ◽  
...  

Eliciting efficient broadly neutralizing antibodies (BnAbs) is an important goal that has yet to be achieved for human immunodeficiency type 1 (HIV-1) vaccine development, although they are rarely produced in virus-infected individuals. In particular, inducing specific neutralizing antibodies to the gp41 membrane proximal external region (MPER) has proven a difficult task. In this study, we introduce Norovirus P particles as a new platform to display the MPER epitope of HIV-1 as a vaccine with the aim of enhancing immune responses. The results showed that HIV-1 chimeric P particles were capable of inducing MPER-specific antibody responses in immunized guinea pigs, although only weakly neutralizing activity could be detected. These findings are consistent with other previous studies which have also focused on the well-studied 2F5 and 4E10 BnAbs. Our findings provide an alternate strategy for design of vaccines against HIV-1. However, great challenges remain in the effort to develop vaccines that can induce efficient HIV-1 neutralizing antibodies.


BioDrugs ◽  
2009 ◽  
Vol 23 (3) ◽  
pp. 137-153 ◽  
Author(s):  
Michael Vaine ◽  
Shan Lu ◽  
Shixia Wang

2007 ◽  
Vol 81 (16) ◽  
pp. 8533-8542 ◽  
Author(s):  
Esther D. Quakkelaar ◽  
Floris P. J. van Alphen ◽  
Brigitte D. M. Boeser-Nunnink ◽  
Ad C. van Nuenen ◽  
Ralph Pantophlet ◽  
...  

ABSTRACT The ability of the broadly neutralizing human immunodeficiency virus type 1 (HIV-1) specific human monoclonal antibodies (MAbs) b12, 2G12, 2F5, and 4E10 to neutralize recently transmitted viruses has not yet been explored in detail. We investigated the neutralization sensitivity of subtype B HIV-1 variants obtained from four primary HIV infection cases and six transmission couples (four homosexual and two parenteral) to these MAbs. Sexually transmitted HIV-1 variants isolated within the first 2 months after seroconversion were generally sensitive to 2F5, moderately resistant to 4E10 and b12, and initially resistant but later more sensitive to 2G12 neutralization. In the four homosexual transmission couples, MAb neutralization sensitivity of HIV in recipients did not correlate with the MAb neutralization sensitivity of HIV from their source partners, whereas the neutralization sensitivity of donor and recipient viruses involved in parenteral transmission was more similar. For a fraction (11%) of the HIV-1 variants analyzed here, neutralization by 2G12 could not be predicted by the presence of N-linked glycosylation sites previously described to be involved in 2G12 binding. Resistance to 2F5 and 4E10 neutralization did also not correlate with mutations in the respective core epitopes. Overall, we observed that the neutralization resistance of recently transmitted subtype B HIV-1 variants was relatively high. Although 8 of 10 patients had viruses that were sensitive to neutralization by at least one of the four broadly neutralizing antibodies studied, 4 of 10 patients harbored at least one virus variant that seemed resistant to all four antibodies. Our results suggest that vaccine antigens that only elicit antibodies equivalent to b12, 2G12, 2F5, and 4E10 may not be sufficient to protect against all contemporary HIV-1 variants and that additional cross-neutralizing specificities need to be sought.


2009 ◽  
Vol 25 (11) ◽  
pp. 1165-1169 ◽  
Author(s):  
Tessa Dieltjens ◽  
Nathalie Loots ◽  
Katleen Vereecken ◽  
Katrijn Grupping ◽  
Leo Heyndrickx ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document